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The idea

"The best way to learn is to do;
the worst way to teach is to talk.
The best way to teach
is to make students ask, and do.
Do not preach facts - stimulate to act".

P. HALMOS, The problem of learning to teach,
Amer. Math. Monthly 82
1975, 750-758
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OPTIMIZATION AND APPLICATIONS

Consulting:
jonas2@optimum2.mii.lt
Web-sites:
http : //soften.ktu.lt/̃ mockus
http : //pilis.if.ktu.lt/̃ jmockus
http : //eta.ktl.mii.lt/ mockus
http : //mockus.us/optimum (short)
Textbook (in Lithuanian):
A. Žilinskas
"Matematinis Programavimas"
Kaunas, VDU, 2000
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Optimality

Objective function

f(x), x = (x1, ..., xm). (1)

Global minimum

f(xA) ≤ f(x) x ∈ A, (2)

or

xA = arg min
A

f(x). (3)

Here A is a feasible region.
Local minimum

f(xǫ) ≤ f(x) x ∈ ǫ. (4)

Here ǫ is a vicinity of xǫ.
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Discrete and convex optimization

Discrete optimization
if variables xi are discrete.
Linear programming
if

f(x) =
m

∑

i=1

cixi, (5)

A :
m

∑

i=1

aijxi ≥ bj , j = 1, ...,m, xi ≥ 0. (6)

Convex programming
if both objective f(x) and feasible region A are convex.
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Fig. 1: Global and local minima
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Global and local minima

Local minimum x = 0.2,
global minimum x = 0.66.
Function f(x): - multi-modal in [0.0,1.0],
- convex in [0.0, 0.3], [0.6,0.8],
- uni-modal in [0.0,0.48], [0.48,1.0].
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Theory of games and markets

Search for equilibrium
A contract with no incentives to brake is equilibrium.
Examples: models of competition, inspection and duel.
Prediction
Examples:
- rates of currency and stocks,
- calls of call-center. Optimal investment
Examples:
- portfolio problem,
- optimal insurance.
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Discrete programming

Optimal scheduling
Examples:
- flow-shop,
- school schedule.
Sequential decisions
Examples:
- bride,
- buy-a-PC,
- buy-a-car.
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Nash equilibrium

Competing servers, Nash version

Profit of server i:

ui = aiyi − xi, i = 1, ...,m, (7)
m

∑

i=0

ai = a, (8)

where a rate of customers.

Customer goes to server i∗, if

hi∗ ≤ hi, i = 0, ...,m, (9)

hi = yi + γi, γi = ni/xi. (10)

yi service price, γi cost of waiting.
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Optimal contract

A contract is optimal if no incentives to break.
Denote the contract vector (ȳi, x̄i). Then the "no-contract
vector":

( ¯̄yi, ¯̄xi) = arg max
(yi,xi)

ui(yi, xi, ȳj , x̄j , j 6= i), (11)

Contract z = (ȳi, x̄i, i = 1, ...,m) is stable if

min
z

f(z) = 0, (12)

f(z) =
m

∑

i=1

(ui( ¯̄yi, ¯̄xi) − ui(ȳi, x̄i)). (13)
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Stable coalitions

Coalition is stable if no incentives to abandon, m = 3.
S1 is "coalition" of single server,
S2 is coalition of two servers,
S3 is monopole- coalition of all three servers.
The profit is divided equally
ui(S3) = (ui + uj + uk)/3,
ui(S2) = (ui + uj)/2,
ui(S1) = ui.
Monopole is stable if
ui(S3) ≥ max{ui(S2), ui(S1)}.
Free individual competition is stable if
ui(S1) ≥ max{ui(S2), ui(S3)}.
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Walras problem

Denote y = (yi, i = 1, ...,m), p = (pi, i = 1, ...,m), x =
(xij , i, j = 1, ...,m). Here xii are local resources, xij are
server j resources used by i. Profit of i

ui(y, p, x) = aiyi + pi

∑

j 6=i

xji −
∑

j 6=i

pjxij , (14)

Customer expences

hi = yi + γi, γi = ni/wi, wi = c0i(1 − e−ciixii−cijxij), (15)

where wi is capacity of server i, bi is resource of server i, cij

defines efficiency of resources, here local resources xii are
defined by balance condition:

xii +
∑

j

xij = bi, i = 1, ...,m, (16)
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Optimal contract in resources x, m=2

Denote the contract resources as x̄12 and x̄21. Then
"no-contract" resources:

¯̄x12(y, p) = arg max
x12

u1(y, p, x12, x̄21) (17)

¯̄x21(y, p) = arg max
x21

u2(y, p, x21, x̄12) (18)

Denote

fx(y, p, x̄12, x̄21) = u1(y, p, ¯̄x12, x̄21) − u1(y, p, x̄12, x̄21)

+ u2(y, p, ¯̄x21, x̄12) − u2(y, p, x̄21, x̄12) (19)

Contract (x̄12(y, p), x̄21(y, p)) is stable if

min
x̄12,x̄21

fx(y, p, x̄12, x̄21) = 0, (20)

Optimal resources: x⋆
12 = x12(y, p) and x⋆

21 = x21(y, p).
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Optimal contract in prices (y,p), m=2

Denote the contract prices (ȳ1, p̄1, ȳ2, p̄2). Then the
"no-contract" prices:

( ¯̄y1, ¯̄p1) = arg max
(y1,p1)

u1(y1, ȳ2, p1, p̄2, x12(ȳ2, p̄2), x21(y1, p1)), (21)

( ¯̄y2, ¯̄p2) = arg max
(y2,p2)

u2(y2, ȳ1, p2, p̄1, x12(y2, p2), x21(ȳ1, p̄1)) (22)

min
ȳ1,p̄1,ȳ2,p̄2

f(ȳ1, p̄1, ȳ2, p̄2) = 0, (23)

f(ȳ1, p̄1, ȳ2, p̄2) = (24)

u1( ¯̄y1, ȳ2, ¯̄p1, p̄2, x12(ȳ2, p̄2), x21( ¯̄y1, ¯̄p1)) −
u1(ȳ1, ȳ2, p̄1, p̄2, x12(ȳ2, p̄2), x21(ȳ1, p̄1)) +

u2( ¯̄y2, ȳ1, ¯̄p2, p̄1, x12( ¯̄y2, ¯̄p2), x21(ȳ1, p̄1) −
u2(ȳ2, ȳ1, p̄2, p̄1, x12(ȳ2, p̄2), x21(ȳ1, p̄1).
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Walras problem, graph error

Relation of profit u1(p1) to resource price p1

(other variables are fixed as the contract prices (ȳ1, ȳ2, p̄2)):
The correct relation :

u1(p1) = a1ȳ1 + p1x21(ȳ1, ȳ2, p1, p̄2) − p2x12(ȳ1, ȳ2, p1, p̄2), (25)

The observed error :

u1(p1) = a1ȳ1 + p1x21(ȳ1, ȳ2, p̄1, p̄2) − p2x12(ȳ1, ȳ2, p̄1, p̄2), (26)

(the same error is in u2(p2)).
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Walras problem, optimization error

Denote the contract prices (ȳ1, p̄1).
The correct ”no-contract” prices :

( ¯̄y1, ¯̄p1) =

arg max
(y1,p1)

(a1y1 + p1x21(y1, ȳ2, p1, p̄2) − p̄2x12(y1, ȳ2, p1, p̄2)), (27)

The suspected error :

( ¯̄y1, ¯̄p1) =

arg max
(y1,p1)

(a1y1 + p1x21(y1, ȳ2, p̄1, p̄2) − p̄2x12(y1, ȳ2, p̄1, p̄2)), (28)

(the same error is suspected in (ȳ2, p̄2)).

A small tour of optimization models – p. 17/172



Inspector’s problem, simple

Inspector’s payoff

u(i, j) =

{

pigiqj , if i = j,

0, if i 6= j.
(29)

Poacher payoff

v(i, j) =

{

−pigjqj + (1 − pi)gjqj , if i = j,

gjqj , if i 6= j.
(30)

where pi is probability to meet in forrest i,
qi , is probability to kill a pray,
gi is the utility of pray.
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Average payoffs

Average payoffs of inspector and poacher

U(x, y) =
∑

i,j

xiu(i, j)yj , (31)

V (x, y) =
∑

i,j

xiv(i, j)yj . (32)

Here xi, yi are visiting probabilities
of inspector and poacher where i denotes a forrest.
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Optimal inspection

Conditions of equal average payoffs
m

∑

j=1

u(i, j)y0
j = U, i = 1, ...,m

m
∑

i=1

v(i, j)x0
i = V, j = 1, ...,m

m
∑

i=1

xi = 1,
m

∑

i=1

yi = 1 (33)

If there is a feasible solution xi ≥ 0, yi ≥ 0, i = 1, ...,m,
that is the equilibrium, if not then additional testing
of equilibrium conditions is made, or the additional
inequalities are introduced: xi ≥ ǫ, yj ≥ ǫ. ǫ > 0.
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Inspector’s problem, extended

Inspector’s payoff

u(i, j) =











pigiqj , if i = j,

0, if i 6= j,

0, if i = ∅.
(34)

Poacher payoff

v(i, j) =











−pigjqj + (1 − pi)gjqj , if i = j,

gjqj , if i 6= j,

0, if j = ∅.
(35)

where pi is probability to meet in forrest i,
qi is probability to kill a pray,
gi is the utility of pray,
∅ means staying at home.
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Average payoffs, extended

Average payoffs of inspector and poacher

U(x, y) =
∑

i,j

xiu(i, j)yj , (36)

V (x, y) =
∑

i,j

xiv(i, j)yj . (37)

Here i, j = 1, 2, ...,m, ∅,
xi, yi are probabilities of inspector and poacher actions,
where i means going to forrest i or ’staying at home’.
Note that in the extended version, the payoffs
do not satisfy the Nash equilibrium conditions,
since they are not convex functions of strategies x∅, y∅,
due to jumps at the points x∅ = 0, y∅ = 0.
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Optimal inspection, extended

Conditions of equal average payoffs

m,∅
∑

j=1

u(i, j)y0
j = U, i = 1, ...,m, ∅

m,∅
∑

i=1

v(i, j)x0
i = V, j = 1, ...,m, ∅

m,∅
∑

i=1

xi = 1,

m,∅
∑

i=1

yi = 1 (38)

If there is a feasible solution xi ≥ 0, yi ≥ 0, i = 1, ...,m,
that is the equilibrium, if not then additional testing
of equilibrium conditions is made, or the additional
inequalities are introduced: xi ≥ ǫ, yj ≥ ǫ. ǫ > 0.
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Inspection example, simple

If qi = gi = 1 then from (29)(30)

u(i, j) =

{

pj , if i = j

0, otherwise,
(39)

and

v(i, j) =

{

−pi + (1 − pi), if i = j

1, otherwise.
(40)

From here

pjyj = U, j = 1, ...,m (41)
∑

i6=j

xi + (1 − 2pj)xj = V, j = 1, ...,m (42)

∑

j

yj = 1,
∑

i

xi = 1, yj ≥ 0, xi ≥ 0
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Two forests

If m = 2 then from (41)

y1 = p2/(p1 + p2), (43)

y2 = p1/(p1 + p2), (44)

and

x1 = p2/(p1 + p2), (45)

x2 = p1/(p1 + p2). (46)

No ’staying at home’ possibility, in these examples.
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m ≥ 2 forrests

u∗ = U = p1p2/(p1 + p2),

v∗ = V = p1 + p2 − 2p1p2/(p1 + p2). (47)

If p1 = 1/3, p2 = 2/3

x1∗ = y∗1 = 2/3, x∗
2 = y2∗ = 1/3, u∗ = 2/9, v∗ = 5/9. (48)

For any m ≥ 2

yi = xi =
∏

k 6=i

pk/(
∑

i

∏

k 6=i

pk), (49)

(50)

where
∏

k 6=i pk is a product of all pk except pi.
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Duel

Two flying objects are fighting.
The trajectories are

dz(t)/dt = az(t), (51)

dw(τ)/dτ = bw(τ), τ = 2 − t, (52)

Thus

z(t) = z0e
at, w(τ) = w0e

bτ . (53)

Hitting probability

p(t) = 1 − d(t)/D. (54)

Here d(t) distance between objects,
firing time is t, maximal distance is D.
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Payoff functions

Payoff function of the first object:

U(t1, t2) =











p(t1) − (1 − p(t1)), if t1 < t2,

−p(t2) + (1 − p(t2)), if t2 < t1,

0, if t2 = t1,

Payoff function of the second object

V (t1, t2) =











p(t2) − (1 − p(t2)), if t2 < t1,

−p(t1) + (1 − p(t1)), if t1 < t2,

0, if t2 = t1.
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One-dimensional duel, "Two Knights"

Payoff function of the first knight:

U(t1, t2) =











t1 − (1 − t1), if t1 < t2,

−t2 + (1 − t2), if t2 < t1,

0, if t2 = t1,

Payoff function of the second knight

V (t1, t2) =











p(t2) − (1 − t2), if t2 < t1,

−pt1 + (1 − t1), if t1 < t2,

0, if t2 = t1.

Equilibrium: t1 = t2 = 0.5. Here D = 2, speed = 1,
Trerefore p(t1) = t1, p(t2) = t2.
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Optimal duel

Optimal firing time:

p(t1) = p(t2) = 0.5. (55)

Optimal initial heights z0, w0

and optimal ascend rates a, b
are calculated by equilibrium conditions
using mixed strategies defined by linear programming.
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Economic duel

Dynamical competition of two servers
Profit functions:

Ui(T ) =

∫ T

t0

ui(t)dt, (56)

ui(t) = ai(t)yi(t) − xi(t), (57)

where
ui(t) is profit of server i, moment t,
a(t) =

∑

i ai(t) is customer arrival rate.
Service price is yi(t), service expenses are xi(t)
Trajectories are from:

dyi(t)/dt = ayi(t), (58)

dxi(t)/dt = bwi(t). (59)

A small tour of optimization models – p. 31/172



Optimal economic duel

We search for initial values yi(0), xi(0),
and change rates a, b,
that provide equilibrium.
Sever i gets broken at moment t∗ if
Ui(t

∗) < −U∗.
The surviving server enjoys monopolistic profit.
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Fig. 2. Utility function
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Explaining Fig. 2

Utility function of
- rich person is denoted by dots,
- average person is denoted by continuous line,
- risk area is [0.0, 3.0],
- risk aversion area is [3.0,6.0],
- investment is x,
- total amount is 6.0
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Lottery

Utility of event 0 ≤ C ≤ 1 is denoted by u(C)
and is defined using the lottery:

C ∼ {pA + (1 − p)B}. (60)

Here utility of keeping C is
u(C) = p,
where p is probability to win e A = 1,
1 − p is probability to win nothing B = 0.
Symbol ∼ denotes the "hesitation"
when a player don’t know what is better:
- to keep the C,
- or to risk loosing C while trying to win better A.
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Expected utility

Expected utility of investment x:

U(x) =
M
∑

k=1

u(yk)p(yk). (61)

Here yk =
∑m

i=1 δicixi is returned wealth,
u(yk) is utility of wealth yk,
xi is capital invested in the object i,
ci = 1 + αi, αi is the yield of i,
δi = 1 if i survives,
δi = 0 if i gets broken,
p(yk) probability to get wealth yk.
For example:
p(y1) = p1

∏

i6=1(1 − pi).
Here y1 = c1x1, and pi is survival probability of i.
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Optimal insurance

Expected utility of investment x

U(x) =
M
∑

k=1

u(yk)p(yk).

Here p(yk) is probability to get wealth
yk =

∑m
i=1 ci(xi), and u(yk) is utility of wealth yk.

ci(xi) =

{

−aixi, if δi = 1

−zi + (1 − ai)xi, if δi = 0.
(62)
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Explaining insurance variables

In the equation
zi is price of the object i,
aixi is insurance cost of object i,
xi ≤ zi is insurance sum of object i.
δi = 1 if i survives,
δi = 0 otherwise,
pi = P{δi = 1} survival probability of object i.
For example:
p(y1) = p1

∏

i6=1(1 − pi),
y1 = c1(x1) +

∑m
i=2 ci(xi), where

c1(x1) = z1 − a1x1, ci(xi) = (1 − ai)xi, i = 2, ...,m.
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Prediction

ARMA is auto-regression moving-average model

wt =

p
∑

i=1

aiwt−i +

q
∑

i=1

bjǫt−j + ǫt. (63)

For example,
wt is stock rate tomorrow
wt−1 is stock rate today,
ǫt is a random component tomorrow,
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ARMA optimization

ai, bj are ARMA parameters defined by minimization of

f(x) =
T

∑

t=1

ǫ2t , (64)

where x = (x1, ..., xp+q), xi = ai, i = 1, ..., p, xi = bi−p, i =
p + 1, ..., p + q.
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Stock-exchange game

One stock two major customers i = 1, 2,
Customer i is buying a stock at moment t if

z(t) ≤ zmin
i (t), (65)

where
z(t) stock rate at t,
zmin
i (t) is a buying level.

Customer i is selling a stock at t if

z(t) ≥ zmax
i (t), (66)

where
zmax
i (t) is a selling level.
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Stock exchange model

Sock rate at t + 1 is defined
by the price of previous deal at moment t

z(t + 1) =











z(t) + ǫ(t + 1), if zmin(t) < z(t) < zmax(t),

zmin(t) + ǫ(t + 1), if z(t) ≤ zmin(t),

zmax(t) + ǫ(t + 1), if z(t) ≥ zmax(t).

Here

zmin(t) = max
i

zmin
i (t), (67)

zmax(t) = min
i

zmax
i (t). (68)
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Expected profit

Expected profit of player i at next moment t + 1:

∆i(t + 1) =

(βi(t + 1) + δ(t + 1) − α(t + 1)) z(t). (69)

Here

βi(t + 1) = (zi(t + 1) − z(t))/z(t), (70)

where zi(t + 1) is expected stock rate at moment t + 1.

δ(t + 1) = d(t + 1)/z(t), (71)

d(t + 1) are expected dividends at moment t + 1.

α(t + 1) = a(t + 1)/z(t), (72)

a(t + 1) is yield at moment t + 1.
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Buying and selling levels

Buying level

zmin
i (t) = kbuy ∆i(t), kbuy > 1. (73)

Selling level

zmax
i (t) = ksell ∆i(t), ksell < 1. (74)

Number of stocks own by customer i at time t

Ni(t + 1) =











Ni(t), if zmin
i (t) < z(t) < zmax

i (t),

Ni(t) + 1, if z(t) ≤ zmin
i (t),

Ni(t) − 1, if z(t) ≥ zmax
i (t)
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Stock-exchange game, Model 2

One stock two major customers i = 1, 2,
Customer i is buying a stock at a moment t if

∆i(t) ≥ kbuy
i , (75)

where
∆i(t) is expected profit rate at a moment t, see (80),
Customer i is selling a stock at t if

∆i(t) ≤ ksell
i , (76)

where
kbuy

i > 0 is a buying level.
ksell

i < 0 is a selling level.
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Stock-exchange game "Soros"

One additional customer Soros s,
Customer Soros s is buying a stock at a moment t if

z(t) ≤ zbuy(t), (77)

Customer Soros s is selling a stock at a moment t if

z(t) ≥ zsell(t), (78)

Here
zbuy(t) is a Soros buying price at a moment t.
zsell(t) is a Soros selling price at a moment t. More funds
can be made available in this model.
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Stock exchange, 2

Sock rate at next moment t + 1 is defined
by the price of previous deal at this moment t

z(t + 1) =































z(t) + ǫ(t + 1), if ksell
i < ∆i(t) < kbuy

i for all i,
zsell(t) + ǫ(t + 1), if ∆i(t) ≤ ksell

i for some i,
zbuy(t) + ǫ(t + 1), if ∆j(t) ≥ kbuy

j for some j,
zsell(t) + ǫ(t + 1), if z(t) ≥ zsell(t),

zbuy(t) + ǫ(t + 1), if z(t) ≤ zbuy(t).
(79)
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Expected profit rate, 2

Expected profit rate of player i at a moment t + 1:

∆i(t + 1) =

(βi(t + 1) + δ(t + 1) − α(t + 1)). (80)

Here

βi(t + 1) = (zi(t + 1) − z(t))/z(t), (81)

where zi(t + 1) is a stock rate at moment t + 1 predicted by
customer i using AR model.

δ(t + 1) = d(t + 1)/z(t), (82)

d(t + 1) are expected dividends at moment t + 1.

α(t + 1) = a(t + 1)/z(t), (83)

a(t + 1) is yield at moment t + 1.
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Buying and selling stocks, Single level

Number of stocks own by customer i at time t

Ni(t+1) =











Ni(t), if ksell
i < ∆i(t) < kbuy

i for all i,
Ni(t) + Nb, if ∆i(t) ≤ ksell

i for some i,
Ni(t) − Ns, if ∆i(t) ≥ kbuy

i for some i.
(84)

Here Nb is a number of stocks to buy and Ns is a number to
sell.
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Multi-level example, 2

Sock rate at t + 1 is defined
by the price of previous deal at a moment t

z(t+1) =































z(t) + ǫ(t + 1), if ksell
i (l) < ∆i(t) < kbuy

i (l) for all i,l
zsell(t) + ǫ(t + 1), if ∆i(t) ≤ ksell

i (l) for some i,l,
zbuy(t) + ǫ(t + 1), if ∆j(t) ≥ kbuy

j (l) for some j,l,
zsell(t) + ǫ(t + 1), if z(t) ≥ zsell(t),

zbuy(t) + ǫ(t + 1), if z(t) ≤ zbuy(t).
(85)

Funds and stocks of the customer Soros s are not limited.
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Buying and selling stocks, 2

Number of stocks own by customer i at time t in the
multi-level mode

Ni(t+1) =











Ni(t), if ksell
i (l) < ∆i(t) < kbuy

i (l) for all i,
Ni(t) + Ni,b(l), if ∆i(t) ≤ ksell

i (l) for some i,
Ni(t) − Ni,s(l), if ∆i(t) ≥ kbuy

i (l) for some i.
(86)

Here
kbuy

i (l + 1) > kbuy
i (l), ksell

i (l + 1) < kbuy
i (l),

Ni,b(l + 1) < Ni,b(l), Ni,s(l + 1) < Ni,s(l),

Ni(t + 1) = Ni(t), if ∆i(t) ≤ ksell
i (l) and no funds left for i.
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Number of stocks for buying and selling, 2

Maximal number of stocks to buy at the time t

Ni,b(t) = (Ci(t) + Ui(t, T0))/z(t), (87)

Here Ci(t) is credit available for customer i at time t,
Ui(t, T0) is customers’ i profit accumulated at time t.
Number of stocks to buy at the time t and buying level l

Ni,b(t, l) = Ni,b/l, (88)

Maximal number of stocks to sell at the time t

Ni,s(t) = Ni(t), (89)

Number of stocks to buy at the time t and buying level l

Ni,s(t, l) = Ni,s/l, (90)

l = 1, 2, 3 as usuall.
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Customer profits, 2

Profit of customer i during time T0 ≤ t ≤ T :

Ui(T, T0) = (91)

Ni(T )zT − N(T0)zT0
−

T
∑

t=T0

(Ni(t + 1) − Ni(t)) z(t).

Profit ui depends on accuracy of prediction βi(t + 1) and
random events ǫ(t).
If customer i predicts by AR model then

zi(t + 1) =

pi
∑

k=1

ak
i zt−k + ǫi(t + 1). (92)
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Parameters of customer predictions

AR parameters ak are defined by condition:

min
ai

t
∑

s=t0

ǫ2i (s), (93)

where

ǫi(s) = z(s) −
pi

∑

k=1

ak
i z(s − k). (94)

This model is for stock exchange simulation
by generating time series of virtual stock rates.
The model is not intended for actual predictions.
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Stock exchange equilibrium

We search for AR parameters (p1, p2) satisfying Nash
equilibrium
using mixed strategies

xpi , i = 1, 2, pi = 1, ..., Pi,

Pi
∑

pi=1

xpi = 1, (95)

0 ≤ xpi ≤ 1.

Here xpi is a probability of parameter pi.
Denote the "no-contract" vector

x1
p1

= arg max
xp1

UK
1 (T0, T, xp1 , x

0
p2

), (96)

x1
p2

= arg max
xp2

UK
1 (T0, T, x0

p1
, xp2) (97)

where x0
pi

, i = 1, 2 is a "contract" vector.
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Search for Nash equilibrium

Nash equilibrium:

(x∗
p1

, x∗
p2

) =

arg min
x0

p1
,x0

p2
,
||(x1

p1
, x1

p2
) − (x0

p1
, x0

p2
)||2 (98)

Optimizing by global stochastic methods.
If minimum not small enough
testing equilibrium conditions
by analysis of profit function convexity.
Final objective
is to define optimal AR parameters.
The results are unexpected- equilibrium is by Wiener model
that means "no prediction".
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Sharpe Ratio

Sharpe ratio is defined as:

S =
E[Ra − Rb]

σ
=

E[Ra − Rb]
√

var[Ra − Rb]
, (99)

where Ra is the asset return, Rb is the return on a
benchmark asset, E[Ra − Rb] is the expected value of the
excess of the asset return over the benchmark return, and
σ is the standard deviation of this expected excess return.
Expected return of portfolio of assets with weights:

E(Rp) =
∑

i

wi E(Ri) (100)

where Rp is the return on the portfolio p, Ri is the return on
asset i, wi ≥ 0 is the weighting of component asset i (that is,
the share of asset i in the portfolio), and

∑

i wi = 1.
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Sharpe Ratio-2

Using these symbols, the portfolio return variance: can be
written as:

σ2
p =

∑

i

∑

j

wiwj cov(RiRj), (101)

. Portfolio return volatility (standard deviation):

σp =
√

σ2
p (102)
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Call center model

Calls are random generated by distribution
Fa(t) = P{τ < t}.
defining probability that time τ
until next call is less than t.
Parameter a denotes call rate- average number
of calls by a time unit.
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Generating arrival times

In the Poisson stream the arrival time
of next customer is defined by condition

Fa(t) = 1 − e−1/at, (103)

τ = −aln(1 − ξ). (104)

where ξ random number uniform in [0,1].
If service time is exponential

Fx(t) = 1 − e−1/mxt, (105)

τ = −xln(1 − ξ), (106)

where mx is service rate of m agents,
then expected waiting time in Poisson stream is

γ =
a

mx(mx − a)
, (107)
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Optimizing number of agents

If x is service rate of single agent,
and m is number of agents
then total service expenses are

c(a,m) = cmm + cγ(a)γ (108)

where cm expenses for one agent,
cγ(a) estimated cost of waiting time.
Optimal number of agents

m(a) = min
m

c(a,m). (109)

Optimizing m important is estimated rate a.
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Scale model

Predicting call rate

Zi = zp(i) sp(i). (110)

where
Zi = (zij , j = 1, ...,m) predicted graph for day i,
zij hour j,
zp(i) average of day p(i),
p(i) defines a previous day similar to the day i.
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Similarity conditions

For example,
similar are days such as Sunday, Saturday, working day.
suPanašūs būna sekmadieniai, šeštadieniai.
Thus assumption that the hourly graph of next Sunday
will be similar to previous Sunday,
the scale is defined by

sp(i) =
zi−1

zp(i−1)
. (111)

Here zi−1 ǎverage of this day,
zp(i−1) average of similar previous day.
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Optimal scheduling

Flow-shop problem
Here the sequence of tools is defined by technology
for example in tailors shop:
scissors,needle, and iron.
Operation times τij define time
to perform a task i by a tool j
For example, in tailor shop τij is
a time to cut a suit i using scissors j.
Objective is make-span minimization
In small scale flow-shop problems
we can optimize by comparing all task sequences,
for example: 2, 1, 4, 6, 5, 3, 7.
Optimizing large scale flow-shop problems
heuristic methods are applied, as usual.
Convergence can be provided by randomization.
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School scheduling

Here tasks represent academic classes. Tools are topics.
School resources are teachers and class-rooms.
Sequence of tools is free.
Objective is minimization of "penalty points". Penalty points
define deviation from the "perfect schedule".
In the web-site examples the initial school schedule is
improved by permutations. Optimization is made by
Simulated Annealing with parameters optimized using
Bayesian approach.
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Sequential decisions

Dynamic programming
”Single bride” problem
No divorce. Number of proposals is N .
Goodness of grooms ω is defined by Gaussian distribution:

p(ω) =
1√

2πσ0

e
−1/2(

ω−α0
σ0

)2
, (112)

where α0 is average goodness ,
σ2

0 is goodness variance.
Brides impression is Gaussian, too:

p(s|ω) =
1√
2πσ

e−1/2( s−ω
σ

)2 . (113)

here σ error of brides judgment.
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Posterior goodness

Posterior goodness of grooms regarding impression s

p(ω|s) =
p(s|ω)p(ω)

∫ ∞
−∞ p(s|ω)p(ω)dω

. (114)

Expected goodness of grooms making impression s

u(s) =

∫ ∞

−∞
ωp(ω|s)dω, (115)

where p(ω) is density of probability. If ω and s discrete

u(sj) =
∑

i

ωiP (ωi|sj), (116)

where P (ωi|sj) is probability of goodness given s = sj.
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Example of posterior probability

Prior probability of rain p(r) = 0.5, that of clear p(c) = 0.5.
Observed probabilities of wrong/right predictions:
p(s = c|r) = 0.1, p(s = r|r) = 0.9,
p(s = r|c) = 0.2, p(s = c|c) = 0.8.
The posterior probability of wrong rain prediction

p(r|s = c) =

p(s = c|r)p(r)/(p(s = c|r)p(r) + p(s = c|c)p(c)) = (117)

0.1 ∗ 0.5/(0.1 ∗ 0.5 + 0.8 ∗ 0.5) = 0.109.

The posterior probability of wrong clear prediction

p(c|s = r) =

p(s = r|c)p(c)/(p(s = r|c)p(c) + p(s = r|r)p(r)) = (118)

0.2 ∗ 0.5/(0.2 ∗ 0.5 + 0.9 ∗ 0.5) = 0.182.
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Bride’s decision function

Expected goodness of the last proposal N

uN (s) = u(s), (119)

because bride must marry at least once
by problem definition.
Optimal decision dN−1(s) for (N − 1)-th proposal:

uN−1(s) = max
d

(du(s) + (1 − d)uN ), (120)

dN−1(s) = arg max
d

(du(s) + (1 − d)uN ). (121)

Optimal decision for (N − n)-th proposal
is defined in a similarly.
This way bride’s decision function is build.
This function shows how the optimal decision
depends on the impression s made by the proposal n.
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Simple example-1

Probability density p of goodness ω

p(ω) =

{

0.5, if −1 < ω < 1,

0, othervise
(122)

Brides’ observation s = ω Then expected goodness of the
last proposal N

uN (s) = u(s) = s, (123)

Optimal decision dN−1(s) for (N − 1)-th proposal:

uN−1(s) = max
d

(d ∗ s + (1 − d) ∗ 0), (124)

dN−1(s) = arg max
d

(d ∗ s + (1 − d) ∗ 0). (125)
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Simple example-2

From here the optimal decission

d∗N−1(s) =

{

1, if s > 0,

0, if s < 0
(126)

and the optimal goodness
u∗

N−1 = max(0, s)
the expected optimal goodness at N − 1

Eu∗
N−1 =

∫ 1

−1
max(0, s)p(s)ds = (127)

0.5

∫ 1

0
sds = 0.25 (128)
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Simple example-3

Optimal decision for (N − 2)-th proposal

uN−2(s) = max
d

(d ∗ s + (1 − d) ∗ 0.25), (129)

dN−2(s) = arg max
d

(d ∗ s + (1 − d) ∗ 0.25). (130)

From here

dN−1(s =

{

1, if s > 0.25,

0, if s < 0.25
(131)

The remaining steps are defined similarly.
This way bride’s decision function is build.
This function shows how the optimal decision
depends on the impression s made by the current proposal.
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"Free" bride (Buy-a-PC)

Decision function
Bride is free to marry and to divorce N times.
Denote groom’s (new PC) goodness by ω.
Assume "clairvoyant" bride
that defines goodness ω = s exactly.
Goodness of actual husband (old PC) denote by q.
Expected "goodness" of the N -th proposal:

uN (ω, qN ) = max
d

(dω + (1 − d)qN ). (132)

Here the optimal decision depends on both components:
goodness of husband (keeping the old PC) q and goodness
of proposal (new PC) ω:

d∗N =

{

1, if ωN > qN − cN ,

0, if ωN ≤ qN − cN
(133)
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Utility goodness

N-th proposal:
The utility of the decision d = 0, to keep the old PC in the
last year N , is qN − cN .
Here qN is the utility of old PC, cN = τN − g0(N) is the
penalty of refusing to buy a new PC. This includes the
waiting losses τN minus the price g0(N) of new PC in the
year N .
It is assumed that we abandon the old PC as soon as we
obtain the new one. Therefore, one "wins" the price g0(N)
of the new PC by using the old PC.
Bride is free to marry and to divorce N times.
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Utility vector- linear approximation

N-th proposal: Define PC parameters by a vector
g = (g0, g1, g2, g3). Here g0 is the market price of PC in $, g1

is the speed of CPU in MHz, g2 is the volume of RAM in
MB, and g3 is the volume of HD in GB.
Express a subjective utility of PC by the weighted sum

ω = a1g1 + a2g2 + a3g3. (134)

Here ai is user evaluations of utility of quality parameter gi

expressed in $ per unit. The users evaluation ω differs from
the market price g0, as usuall.
The PC utility defined as a sum of utilities of different
components is just first approximation. Therefore, we need
to evaluate different PC configurations separately.
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Utility function

N-th proposal:
The problem is how to define user evaluation based on the
utility theory.
Step 1: define a set of events E as a set of PC described by
different feasible vectors (g1, g2, g3, g4)
Step 2: define a sequence of events Ei, i = 1, ..., I ordered
by the condition Ei−1 ≤ Ei ≤ Ei+1. Condition EI ≤ Ei+1

means that we prefer PC Ei+1 to Ei.
Step 3: set the normalized utility functions
u0(E1) = 0, u0(EI) = 1
Step 4: define the remaining utility functions u0(Ei) = pi

where pi is the ’hesitation’ probability determined by the
lottery:

Ei ∼ {piEI + (1 − pi)E1}. (135)
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Relation of quality and price

N-th proposal: Define by h rhe highest price a user is ready
to paye for the best PC. Then the general utility u(Ei) of the
PC of lesser configuration Ei is

u(Ei) = h ∗ u0(Ei) − g0i (136)

Or, in case of linear approximation:

u(Ei) = ωi − g0i (137)

where ωi is goodness of PC Ei calculated by (134) and g0i

is the market price.
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Maximization of expected goodness

Regarding ( N − i)-th proposal
Optimal goodness depends on q and ω.

uN−i(ω, q) =

max
d

(dω + (1 − d)(uN−i+1(qN−i+1) − cN−i)).

Here uN−i+1(q) is expected goodness of
(N − i + 1)-th proposal given husband goodness q.

uN−i+1(q) =
∫ ∞

−∞
uN−i+1(ω, q)pN−i+1(ω)dω. (138)
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Decision function

Regarding ( N − i)-th proposal
pN−i+1(ω) is probability of goodness ω of (N − i + 1)-th
proposal.

qN−i+1 =

{

ωN−i, if qN−i+1 < q∗N−i,

qN−i, if qN−i+1 ≥ q∗N−i

Here q∗N−i is defined by

ωN−i = uN−i+1(q
∗
N−i) − cN−i. (139)

Optimal decision regarding (N − i)-th proposal

d∗N−i =

{

1, if ωN−i > uN−i+1(qN − i + 1) − cN−i,

0, if ωN−i ≤ uN−i+1(qN−i+1) − cN−i

Here decision function d∗N−i depends on both ω and q.
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Diet problem

minx

m
∑

i=1

((ci − si)xi + g(
m

∑

i=1

ai1xi − b1)), (140)

m
∑

i=1

aijxi ≥ b′j ,

m
∑

i=1

aijxi ≤ b′′j , j = 1, ..., n (141)

xi ≥ 0, i = 1, ...,m. (142)

For example,
c1 is a price of bread, a11 are calories of bread, b′1 are
necessary calories, b′′1 are harmful calories, si is the taste
(expressed in money units) , g beauty factor (expressed in
money units).
Second inequality (141) is not included into LP, it is a
warning.
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Diverse diet problem

minx

m
∑

i=1

((ci − si)xi + g(
m

∑

i=1

ai1xi − b1) − d(
m

∑

i=1

dixi)), (143)

m
∑

i=1

aijxi ≥ b′j ,

m
∑

i=1

aijxi ≤ b′′j , j = 1, ..., n (144)

xi ≥ 0, i = 1, ...,m. (145)

Here
d is the taste of food diversity (expressed in money units),
di is the dish indicator: di = 1, if xi is a dish, di = 0,
otherwise,
If xi is a dish then xi = int and 0 ≤ xi ≤ 1.
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Longer term diet problem

minx

m
∑

i=1

((ci − si)xi + g(
m

∑

i=1

ai1xi − Tb1) − d(
m

∑

i=1

dixi)) (146)

m
∑

i=1

aijxi ≥ Tb′j ,

m
∑

i=1

aijxi ≤ Tb′′j , j = 1, ..., n (147)

m
∑

i=1

dixi ≤ T,
m

∑

i=1

di ≥ T. (148)

Here d is the taste of food diversity, T is the time period, di

is the dish indicator: di = 1, if xi is a dish, othervise di = 0. If
xi is a dish then xi = int and 0 ≤ xi ≤ 1.
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Combinatorial diet problem

minx(
m

∑

i=1

(ci − si)xi + g(
m

∑

i=1

ai1xi − Tb1) − d(x) +

b

n
∑

j=1

(B′
j+ + B′′

j+)), (149)

Here

B′
j = (−

m
∑

i=1

aijxi + Tb′j), B′′
j = (

m
∑

i=1

aijxi − Tb′′j ), (150)

B′
j+, B′′

j+ are positive parts of B′
j , B

′′
j , d(x) is a function

defining the taste of food diversity (for example, d(x) could
be a number of different non-zero components xi in the diet
x), b is a penalty factor for violation constraints. (147)
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Solving combinatorial diet problem

Step 1. Set an initial diet x = x1 and evaluate its quality by
calculating the sum:

D(x1) = (
m

∑

i=1

(ci − si)x
1
i + g(

m
∑

i=1

ai1x
1
i − Tb1) − d(x1) +

b
n

∑

j=1

(B′
j+ + B′′

j+)) (151)

Step 2. Generate next diet x2 by changing randomly some
dishes and evaluate the quality D(x2).
Step 3. If h2 = D(x2) − D(x1) ≤ 0 go to x2.
If h2 > 0 go to x2 with probability r2;
keep x1 and return to step 1 with probability 1 − r2.
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Combinatorial diet problem-2

Probability r2 is generated by SA formula 231 defined in the
slide "Simulated Annealing"
Parameter x of SA is optimized using GMJ system.
Bayesian Heuristic Approach (BHA) is recommended
method for improving a user defined initial diet by
optimizing parameters of Simulated Annealing (SA).

A small tour of optimization models – p. 85/172



Defining SA parameters

Step 1. Generate probability r2 by SA formula 173.
Step 2. Optimize parameter x of SA by GMJ.
The standart reference to GMJ is this:
public Domain domain ()
return domain;
public double f (Point pt)
..............
return f
Here ’domain’ defines constraints of SA variables,
’pt’ is vector of SA variables,
’f’ is the ’goodness’ function of the best diet
after ’IT’ iterations using fixed SA variables.
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Simplex algorithm

Simple example:

minxz (152)

z = x1 − x3 (153)

x1 + x2 + x3 = 1, xi ≥ 0 (154)

Here x2 base variable,
x1, x3 free variables. x1 = 1 base solution obtained
when free variables are equal to zero
x1 = x3 = 0, then z = 0.
This base solution is improved by increasing x3,
because c3 = −1 < 0.
New base solution x3 = 1, x1 = x2 = 0, where z = −1, can’t
be improved,
since both free variables are non-negative c1 = 1, c2 = 0.
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Knapsack problem

Integer Linear Programming

max
x

m
∑

i=1

cixi, (155)

m
∑

i=1

gixi ≤ g, (156)

xi = {0, 1}. (157)

Here ci is price of the object i and gi is weight of object i,
g is weight limit.
xi = 1 means to take object i, xi = 0 means to leave it.
For small scale problems Branch-and-Bounds are used,
for large scale heuristics are applied, as usual.
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Method of Branch-and-Bounds

Example is the knapsack problem:

max
x

m
∑

i=1

cixi (158)

m
∑

i=1

gixi ≤ g, xi = {0, 1}. (159)
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Calculating Bounds

Bounds are obtained by the auxiliary LP problems:

C1 = c1 + max
x

m
∑

i=2

cixi (160)

g1 +
m

∑

i=2

gixi ≤ g (161)

C0 = max
x

m
∑

i=2

cixi (162)

m
∑

i=2

gixi ≤ g (163)

Branch 1- take the object, branch 0- leave the object.
If C0 < c1- cut branch 0, if C0 ≥ c1- keep branching.
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Worst case

Worst case is when
ci = c, gi = gi, i = 1, ...,m.
Here no branch is cut and all N = 2m knapsacks are
regarded.
Difficult case is when
hi = ci/gi = h, i = 1, ...,m.
Here just a few branches are cut.
Favorable case is when hi differ.
Here many branches are cut.
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Heuristic methods

max
x

m
∑

i=1

cixi, (164)

m
∑

i=1

gixi ≤ g, xi = {0, 1}. (165)

Here heuristics

hi = ci/gi. (166)

Greedy heuristics is to take the best object

i∗ = arg max
i

hi. (167)

Here N ≤ m2 if hi differ. If hi = const- the greedy heuristic
don’t work, randomization is applied.
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Mixing heuristics

Example is the knapsack problem.
Randomized heuristic means taking object i with probability
ri.
Traditional randomization

ri = hi/
∑

j

hj . (168)

works well if hi differ. If all hi are equal
this means uniform random search.
Example of mixed randomization:

r0
i = 1/m, (169)

r1
i = hi/

∑

j

hj , (170)

r∞i = 1, jei hi = max
j

hj . (171)
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Optimizing mixture of heuristics

Example is a lottery of three heuristics: x = (x0, x1, x2).
Here
x0 is a probability to "win" the greedy heuristic,
x1 is a probability to "win" the randomized greedy heuristic,
x2 is a probability to "win" the Monte Carlo search.
Lottery x is optimized using Bayesian algorithm
searching for x providing best average results after K
iterations.
That is a simple example of Bayesian Heuristic Approach
(BHA).
Another example of BHA is school scheduling where
parameters of Simulated Annealing (SA) are optimized.
Third example of BHA is flow-shop problem where mixture
of three heuristics is optimized.

A small tour of optimization models – p. 94/172



Optimization complexity

Algorithm is polynomial if the computing time T = CmK .
Here K is an integer and m is complexity.
In discrete problems m is number of variables.
In continuous problems m is accuracy,
meaning that error ǫ ≤ 2−m.
Algorithm is exponential, if the computing time T ≥ C2m.
Important are NP -complete problems.
Simplest examples are knapsack and traveling salesman
problems.
No polynomial algorithm is known for NP -complete
problems.
However there is no proof that exponential algorithm is
needed.
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Complexity examples

Linear programming is polynomial:
simplex algorithm is exponential but interior point is
polynomial.
Knapsack, flow-shop and traveling salesmen problems all
are NP -complete.
Global optimization of continuous functions is exponential,
in general.
Here computing time
T ≥ C2mn,
where
m is accuracy,
n is number of variables.
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Local optimization

Descent methods
Objective is minimization of function
f(x), x = (xi, i = 1, ...,m),

xn+1 = xn − αnsn. (172)

Here α is step size and sn is step direction.

αn = arg minαf(xn − αnsn), (173)

where n is iteration number.
Simple case is gradient algorithm when

sn = grad f(xn). (174)

Here the gradient is

grad f(xn) = (
∂f(xn)

∂xi
, i = 1, ...,m). (175)
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Newton’s method

In Newton’s method the step direction is

sn = H−1
n grad f(xn), (176)

where the Hessian

Hn = (
∂2f(xn)

∂xi ∂xj
, i, j = 1, ...,m). (177)
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Quasi-Newton’s method

In Quasi-Newton’s (variable Metrics) method step direction
is

H−1
n ≈ Gn, (178)

where

Gn+1 = Gn − (Gnγn)(Gnγn)T

γT
n Gnγn

+
δn δT

n

δT
n γn

. (179)

Here symbol T denotes transposition,

γn = grad f(xn) − grad f(xn−1), (180)

δn = xn − xn−1, (181)

G0 = I. (182)
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Local convergence

Gradient method converges,
if f(x) is a convex differentiable function.
Newton’s and Quasi-Newton’s methods converge, if f(x)
is convex twice-differentiable function.
Gradient method converges slowly:

||xn − x∗|| → 0. (183)

Newton’s and Quasi-Newton’s methods converge fast:

||xn − x∗||
||xn−1 − x∗|| → 0, (184)

where x∗ is the optimum.
The main difficulty of Newton’s method is calculation of
inverse Hessian H−1

n . Newton’s method fails if det Hn = 0.
No inverse Hessian is needed using Quasi-Newton’s.
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Constrained optimization

max
x

f0(x), (185)

fj(x) ≤ cj , j = 1, ..., n. (186)

Penalty function:

max
x

{f0(x) −
∑

j

bj(fj(x) − cj)
2}, (187)

bj =

{

b, jei fj(x) > cj ,

0, jei fj(x) ≤ cj
(188)

It is difficult to define right penalty factor b: if b is small then
constraits are violated, if b is great then we optimize the
penalties instead of the original function f(x).
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Lagrange multipliers

Constrained optimization

max
x

f0(x), (189)

fj(x) ≤ cj , j = 1, ..., n. (190)

Optimization of Lagrange function

min
λ>0

max
x

{f0(x) −
∑

j

λj (fj(x) − cj)}. (191)
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Economics of Lagrange multipliers

min
λ>0

max
x

{f0(x) −
∑

j

λj (fj(x) − cj)}. (192)

Economic interpretation of Lagrange function:
f(x) is profit of factory owner, cj is available resource j,
x is technology chosen by factory owner,
λj is the price for additional resource j set by owner of the
resource,
minλ>0 maximizes profit of resource owner,
maxx maximizes profit of factory owner at fixed prices λ for
additional resources.
If all fj(x), j = o, .., n are convex then minimization of
Lagrangian provides minimum of original constrained
optimization problem.
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Stochastic Gradient

Minimize

min
x

f(x). (193)

(194)

When we observe the sum:

φ(x) = f(x) + ξ (195)

where ξ is Gaussian noise (0, σ).
Then the stochastic gradient:

xn+1 = xn − an/sn (ψ(xn + sn) − ψ(xn)). (196)
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Stochastic Gradient, Convergence

The sequence 196 converges with probability 1 to the
minimum of convex differentiable fumction f(x) if:

lim
n→∞

sn = 0, (197)

lim
n→∞

n
∑

i=1

ai/si = ∞, (198)

lim
n→∞

n
∑

i=1

(ai/si)
2 = C < ∞. (199)

where n is iteration number.
For example,
sn = 1/n, an = 1/n2

A small tour of optimization models – p. 105/172



Stochastic Linear Programming 1

x + 2y = c (200)

x + y = a (201)

where c is cost, x is production, a ≥ 0 is uncertain demand,
y is amount to buy.
Expected cost:

f(x) = xP (a ≤ x) + 2(a − x)P (a ≥ x) (202)

where P (a ≤ x) is probability that demand will not exceed
production.
Suppose that probability density

p(a) =

{

1, if 0 ≤ a ≤ 1,

0, otherwise
(203)
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Stochastic Linear Programming 2

From here:

f(x) =

∫ x

0
xda +

∫ 1

x
2(a − x)da = (204)

x2 + 1 − x2 − 2x(1 − x) = 1 − 2x + 2x2 (205)

minimum f(x) = 1/2 is reached when x = 1/2
and is equal to expected demand:
Ea =

∫ 1
0 ada = 1/2

but not always, they say
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Global continuous optimization

Uniform grid

rn = max
x

min
i

||x − xi||. (206)

Grids x(n) = (xi, i = 1, ..., n) that minimize
r0
n = minxi,i=1,...,n rn, provide best accuracy for Lipschitz

functions
||f(xi) − f(xj)||

||xi − xj ||
≤ L < ∞, (207)

where L is Lipschitz constant. Here best accuracy means
minimization of maximal deviation ǫ from the global optimum

ǫ = LRn, (208)

Rn = arg min
x(n)

rn. (209)
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Pareto-Lipschitzian optimality (PO)

Objective is to minimize Lipschitz-function fL(x) with
unknown Lipschitz constant L.
The decision x dominates the decision x∗ if

fL(x) ≤ fL(x∗), for all L (210)

fL(x) > fL(x∗), for at least one L (211)

The decision x∗ is Pareto Optimal (PO) if there is no
dominant x.
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Pareto-Lipschitzian optimization (PLO)

The variables x are represented by the intervals
i : ai ≤ x ≤ bi and the function fL(x) is approximated by the
lower bounds f(x)

fL(x) ≤ f(ci) − L ∗ li/2, ai ≤ x ≤ bi. (212)

Here ci = (bi + ai)/2, li = bi − ai. The interval i : ai ≤ x ≤ bi

dominates the interval j, if

f(ci) − L ∗ li/2 ≤ f(cj) − L ∗ lj/2, for all L (213)

f(ci) − L ∗ li/2 < f(cj) − L ∗ lj/2, for at least one L (214)

The interval j is Pareto Optimal (PO) if there is no dominant
interval i.

A small tour of optimization models – p. 110/172



Examples of (PLO)

Example 1
The lenghts:
l1 = 3, l2 = 2, l3 = 1.
The function values:
f(c1) = 3, f(c2) = 2, f(c3) = 2.
The intervals 1 and 3 are PO, the interval 2 is not PO.
Example 2
The lenghts:
l1 = 3, l2 = 2, l3 = 1.
The function values:
f(c1) = 3, f(c2) = 2, f(c3) = 1.
Here all the intervals 1 and 2 and 3 are PO.
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Defining user preferences

A convenient way to represent user preferences is by
supplying an importance measure to each multi-criteria
component L. Since the set of the Lipschitz functions are
continuous, the proper measure would be the probability
density p(L). Then the PO interval

i(p) = arg mini

∫

L
(f(ci) − L ∗ li/2)p(L)dL =

arg mini(f(ci) − E{L} ∗ li/2). (215)

were E{L} is the expected value of the Lipschitz constant
L.
If, for example p(L) = exp(−L) then E{L} = 1. In standard
applications the criteria set is discrete, so, the integral is
replaced by sum.
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Building nearly-uniform grids

In multi-dimensional global optimization problems building
exactly uniform grids is difficult.
Then "LPtau" or "Monte Carlo" approximations are used.
LPtau grids provide nearly-uniform coordinate projections.
Monte Carlo grids generate coordinates xi, i = 1, ..., n
independently by uniform probability distributions.
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Bayesian methods

Uniform grids minimize maximal deviation by using
T = C2mn of computing time, where
n is number of variables,
m defines the accuracy by the condition ǫ ≤ 2−m.
This is expensive if m or n are large.
Then Bayesian methods are applied.
Bayesian methods minimize expected deviation for a given
iteration number.
Defining expected deviation statistical models of objective
functions are needed.
Simple one-dimensional example is the Wiener model.
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Fig. 2. Wiener model
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Wiener model optimization

In Fig. 2. mn(x) is the conditional mean,
dn(x) is the conditional variance,
R(x) is the risk function,
Bayesian method minimizes the risk function

xn+1 = arg min
x

R(x). (216)
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Risk function

In the Wiener model the risk function

R(x) =

1
√

(2πdn(x))

∫ +∞

−∞
min (cn, yx) e−

(yx−mn(x))2

dn(x) dyx

Here
yx = f(x),
cn = mini f(xi) − ǫ, ǫ > 0.
Note that
R(x) = cn, if x = xi

since
dn(xi) = 0.
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Coordinate optimization

Wiener model is applied for coordinate optimization when
m > 1,

x1 = arg min
x1

f(x0) (217)

x2 = arg min
x2

f(x1) (218)

.......................................................

xm = arg min
xm

f(xm−1) (219)

.......................................................

Here results depend on initial points x0.
However the coordinate optimization is a convenient tool of
visualization by one-dimensional projections. Coordinate
optimization by Wiener model converges if

f(x) =
∑

i

fi(xi) or f(x) =
∏

i

fi(x) (220)
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Multi-dimensional Bayesian method

The point of next observation (calculation of f(x)):

xn+1 = arg min
x

R(x) (221)

R(x) = y0n − min
i

||x − xi||2
f(xi) − cn

, (222)

cn = min
i

f(xi) − ǫ, ǫ > 0. (223)

When n is large

d∗/da = (
fa − f∗ + ǫ

ǫ
)1/2

Here d∗ density of observations in the vicinity of x∗,
f∗ average value f(x) around x∗,
dA average density of observations, fA average values of
f(x).
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Vector optimization

Objective is to maximize vector-function

f(x) = (fi(x), i = 1, ...,m). (224)

Pareto optimum is the set X∗.
x∗ ∈ X∗, if there are no such x that

fi(x) ≥ fi(x
∗), ∀i (225)

fj(x) > fj(x
∗), ∃j (226)
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Scalarization

By weights

x(c) = arg max
x

∑

i

cifi(x), ci > 0. (227)

Here x(c) ∈ X∗.
’bf By constraints

x(b) = arg max
x

f1(x) (228)

fi(x) ≥ bi, i = 2, ...,m. (229)

Here x(b) ∈ X∗, if x(b) is unique,
otherwise, non-Pareto points are possible.
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Simulated Annealing (SA)

Simulated Annealing (SA) is the most popular global
optimization method Denote

hj = f(xj) − f(xj−1), (230)

if hj ≥ 0, then go to xj

if hj < 0, then go to xj with probability

rj =

{

e
hj

x/ ln(1+j) , if hj < 0,

1, otherwise
(231)

SA is very simple and convenient for theoretical analysis.
Efficiency of SA is increased by optimization of parameters,
for example by optimization of x for given family of objective
functions f(x) at fixed number of iterations. Here the
Bayesian approach is useful.
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Sawmil problem

Objective is to minimize waste wile sawing i = 1, ...,m
planks from j = 1, ..., n logs.
All dimensions are given.
Denote by hij priority rule used defining what plank i to saw
and from which log j.
The results depends on goodness of heuristic hij and on
the efficiency of algorithms providing geometric constraints.
Here heuristics are not simple. Geometric constrains
keeping planks inside logs are complicated.
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Formalization of sawmil problem

min
y

v(y), y = (yijk), (232)

i = 1, ...,m, j = 1, ..., n, k = 1, ..., K,

aiyijk ≤ dijk.

Here v(y) is the waste calculated as difference between the
volumes of logs and planks, ai is thickness of plank i, dijk is
thickness of log j at place k where plank i sawed.

yijk =

{

1, jei i ∈ (j, k),

0, otherwise
(233)

where i number of plank, j is number of log, k defines the
place where plank i is sawed from log j, i ∈ (j, k) means
that plank i is in log j at the place k.
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Fig. 3. Complete cut
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Fig. 4. Segment cut

A small tour of optimization models – p. 126/172



Completing trains

The objective is to minimize the number of train n = n(y) for
m cars

min
y

n(y), (234)

m
∑

i=1

aiyij ≤ Aj , (235)

m
∑

i=1

biyij ≤ Bj . (236)

Here

yij =

{

1, jei i ∈ j,

0, otherwise.
(237)

A small tour of optimization models – p. 127/172



Completing trains, notation

In the formula of completing trains: ai is weight of car i,
Aj is maximal weight of train j,
bi is length of car i,
Bj is maximal length of train j,
i ∈ j means that the car i is in the train j.
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Theory of games and applications

In the optimization part of this course the models of games
and markets are regarded as examples of optimization
problems.
In the game-theoretical part basic elements of theory of
games and markets are explained and some additional
problems are introduced.
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Simplest game, "Toss-up"

Here two players and two moves.
Payoff matrix of the first player;

u(i, j) =

∣

∣

∣

∣

∣

1 −1

−1 1

∣

∣

∣

∣

∣

(238)

where i = 1, 2 are moves of the first player,
and j = 1, 2 are moves of the second player.
Payoff matrix of the second player

v(i, j) =

∣

∣

∣

∣

∣

−1 1

1 −1

∣

∣

∣

∣

∣

(239)

Here v(i, j) = −u(i, j), that is a zero-sum game.
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Byesian game, "Toss-up"

Here two players,
first is a person, second is the "nature"
and two moves.
Payoff matrix of the first player;

u(i, j) =

∣

∣

∣

∣

∣

1 −1

−1 1

∣

∣

∣

∣

∣

(240)

where i = 1, 2 are moves of the first player,
and j = 1, 2 are moves of the ’nature’.
In Bayesian game nature uses mixed strategy,
assume that p(1) = 1/2 + ǫ, p(2) = 1 − p(1)
then optimal strategy of the first player is 1-st row
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Pure and mixed strategies

Moves made directly are pure strategies. Moves made by
random procedures are mixed strategies.
Expected payoffs are players objectives if mixed strategies
are used.

U(x, y) = x1y1 − x1y2 − x2y1 + x2y2

V (x, y) = −x1y1 + x1y2 + x2y1 − x2y2 (241)

where
0 ≤ xi ≤ 1, i = 1, 2 is mixed strategy of the first player
(probability of making the move i),
and yi is mixed strategy of the second player
From here

U(x, y) = 4x1y1 − 2x1 − 2y1 + 1

V (x, y) = −4x1y1 + 2x1 + 2y1 − 1 (242)
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Equilibrium strategies

Equilibrium are strategies with no incentives for change. In
the "Toss-up" game there is no equilibrium by pure
strategies. But there exists an equilibrium by mixed
strategies

xi = yi = 0.5 (243)

U(x1 = 1/2, y1 = 1/2) = 0,

V (x1 = 1/2, y1 = 1/2) = 0 (244)

x2 = 1 − x1, y2 = 1 − y1.

Here mixed strategies xi = yi = 0.5 are generated by
tossing a coin. We see that

U(x1 = 1/2 + ǫ, y1 = 1/2) < 0,

V (x1 = 1/2, y1 = 1/2 + ǫ) < 0, (245)

if ǫ 6= 0.
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Bimatrix games

In bimatrix games u(i, j) 6= −v(i, j)
Simple example is asymmetric version of the "Toss-up"
game

u(i, j) =

∣

∣

∣

∣

∣

1 −1

−1 1

∣

∣

∣

∣

∣

(246)

v(i, j) =

∣

∣

∣

∣

∣

−1 1

1 0

∣

∣

∣

∣

∣

(247)
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Strategies of bimatrix game

Expected payoff

U(x, y) = x1y1 − x1y2 − x2y1 + x2y2,

V (x, y) = −x1y1 + x1y2 + x2y1, (248)

or

U(x, y) = 4x1y1 − 2x1 − 2y1 + 1,

V (x, y) = −3x1y1 + x1 + y1. (249)

Here the equilibrium

y1 = y2 = 1/2, (250)

x1 = 1/3, x2 = 2/3, (251)

u∗ = U(x1 = 1/3, y1 = 1/2) = 0, (252)

v∗ = V (x1 = 1/3, y1 = 1/2) = 1/3, (253)
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Equalizing expected payoffs

Denote

U(1, y) = y1 − y2, U(2, y) = −y1 + y2, (254)

V (x, 1) = −x1 + x2, V (x, 2) = x1, (255)

where U(i, y) expected payoff of the first player using the
move i if the second uses mixed strategy y, expected payoff
of the second player V (x, j) is defined similarely
Strategies x, y can be defined using linear programming

U(1, y) = U,U(2, y) = U,

V (x, 1) = V, V (x, 2) = V.

(256)

where 0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1, x1 + x2 = 1, y1 + y2 = 1. The
solution if exists satisfies equilibrium condition.
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Equilibrium in pure strategies

Equilibrium in pure strategies of of bimatrix games can be
found by comparing all pairs (i, j) of pure strategies. For
example:

u(i, j) =

∣

∣

∣

∣

∣

1 −1

−1 1

∣

∣

∣

∣

∣

(257)

v(i, j) =

∣

∣

∣

∣

∣

−1 1

1 2

∣

∣

∣

∣

∣

(258)

Equilibrium strategies are (i = 2, j = 2) and payoffs are
u(2, 2) = 1, v(2, 2) = 2.
Note that here is no solution of the linear programming
problem equalizing expected payoffs.
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Prisoners’ dilema

1 yes, 2 no rows controlled 1-st prisoner
columns controlled 2-cond prisoner

u(i, j) =

∣

∣

∣

∣

∣

3 1

10 2

∣

∣

∣

∣

∣

(259)

v(i, j) =

∣

∣

∣

∣

∣

3 10

1 2

∣

∣

∣

∣

∣

(260)

Here
Equilibrium (1,1)
Pareto (2,2)(2,1)(1,2)

A small tour of optimization models – p. 138/172



Family problem

1 opera, 2 soccer
rows controlled by husband
columns controlled by wife

u(i, j) =

∣

∣

∣

∣

∣

10 0

0 20

∣

∣

∣

∣

∣

(261)

v(i, j) =

∣

∣

∣

∣

∣

20 0

0 10

∣

∣

∣

∣

∣

(262)

Here
Equilibrium (1,1)(2,2)
Pareto (1,1)(2,2)
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The deal

If v(i, j) 6= −u(i, j),
then deal is possible.
For example inspector can make deal with poacher to
devide the pray.
The solution is Nash deal.
Nash deal depends on a set D of feasible payoff partitions
and on the "no-deal" payoffs

u∗ = maxx minyU(x, y),

v∗ = maxx minyV (x, y). (263)

Here
u∗ is maximal guaranteed payoff of the first player
and v∗ is maximal guarantee payoff of the second player.
The deal is (ū, v̄), where ū is payoff of the first player and v̄
is payoff of second player.
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Nash axioms

1. (ū, v̄) ≥ (u∗, v∗),

2. (ū, v̄) ∈ D,

3. if (u, v) ∈ D ir (u, v) ≥ (ū, v̄),
then (u, v) = (ū, v̄),

4. if (ū, v̄) ∈ T ⊂ D ir (ū, v̄) = φ(D, u∗, v∗), then
(ū, v̄) = φ(T, u∗, v∗),

5. if a set D′ is obtained from the set D by these equalities
u′ = a1u + b1, v′ = a2v + b2, then, from φ(D, u∗, v∗) = (ū, v̄)
follows that φ(D′, a1u + b1, a2v + b2) = (a1u + b, a2v + b2),

6. if (u, v) ∈ D ⇔ (v, u) ∈ D, u∗ = v∗ ir φ(D, u∗, v∗) = (ū, v̄),
then ū = v̄.
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Nash deal

If Nash axioms are true then exists an unique deal function
φ(D, u∗, v∗) = (ū, v̄)
If there is such pair (u, v) ∈ D that u > u∗, v > v∗, then the
deal is

(ū, v̄) = arg maxu,v(u − u∗)(v − v∗), (264)

where

(u, v) ∈ D, u ≥ u∗, v ≥ v∗ (265)

If the feasible payoff is limited by c then

D = {(u, v) : u + v ≤ c}. (266)

Here the deal

(ū, v̄) =

((c + u∗ − v∗)/2, (c + v∗ − u∗)/2) (267)
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Nash deal, simple example

In simple example of bimatrix game
(u∗, v∗) = (0, 1/3).
If feasible payoff u + v is not limited then the deal
(ū, v̄) = (1, 1).
If feasible payoff is limited: u + v ≤ c = 1,
then the deal
(ū, v̄) = (1/3, 2/3).
If the payoff limit is c = 1/3
then a part of the first player in the deal is zero
(ū, v̄) = (0, 1/3)
Therefore the first player makes no deal because no-deal
payoff is high enough
u∗ = ū.
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Nash deal, inspector’s example

In the inspector-poacher deal
feasible payoff is limited by c = 1.
Guaranteed payoffs are
u∗ = 2/9, v∗ = 5/9.
Then the Nash deal
(ū, v̄) = (1/3, 2/3).
This deal is stable since
(1/3, 2/3) > (2/9, 5/9)
The deal can be prevented prevented if inspector’s
expected deal penalty
B > ū − u∗ = 1/9.
Here B = pb b where pb is probability of deal penalty b .
If the penalty b = 1 is equal to price of pray
then the penalty probability should be pb > 1/9.
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Nash deal, strike example

Here x ∈ [0, a] is employer’s pure strategy that means to pay
salary x, where a is the employer’s income.
Employee’s strategies are

y =

{

0, strike
1, work

(268)

Employer’s payoff

u(x, y) =

{

a − x, if y = 1

−x, otherwise.
(269)

Employee’s payoff

v(x, y) =

{

x, if x > 0

−b, if x = 0.
(270)
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Strike example, payoffs

Here guaranteed payoffs
u∗ = 0, v∗ = −b,
where b define the employee’s "zero-income" loss.
The feasible payoff is limited by c = a.
If b < a, then the deal

(ū, v̄) = ((a + b)/2, (a − b)/2). (271)
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Equilibrium, formal definition

Notation:
m is number of players,
yj , j = 1, ...,m are strategies of players j,
ui = ui(yj , j = 1, ...,m), i = 1, ...,m is expected payoff of the
player i that depends on the strategies of all players.
y0
j , j = 1, ...,m is a "contract" strategy of player j, and U0

j j

is the expected "contract" profit . Suppose that a player
brakes the contract only if expects larger profit

U1
j > U0

j , (272)

U1
j = maxyjuj(y

0
1, ..., yj , ..., y

0
m), j = 1...,m. (273)

Thus a contract y0 = (y0
j , j = 1, ...,m) is Nash equilibrium if

∆U =
∑

j

(U1
j − U0

j ) = 0. (274)
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Equilibrium, sufficient conditions

Equilibrium exists if
1. Expected payoffs Ui(xj , j = 1, ..,m) are convex functions
of strategies xj

2. Sets Xj of feasible strategies xj are convex.
In the "Toss-up" game the set of two pure strategies x1 = 0
and x2 = 1 is not convex and no equilibrium exists.
A set of mixed strategies x ∈ [0, 1] is convex, so the
equilibrium exists.
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Contracting operator

Stability of equilibrium depends on operator T : yn+1 = T (yn)
transforming the "contract" vector , y0 = (y0

j , j = 1, ...,m)

into "no-contract" vector y1 by maximization of the expected
profit

y1
j = arg maxyjuj(y

0
1, ..., yj , ..., y

0
m), j = 1...,m. (275)

under the assumption that competitors honour the contract.
Operator T is contracting if

||T (yn + 1) − T (yn)||
||yn + 1 − yn|| ≤ ρ < 1 (276)

Equilibrium is stable if T is contracting.
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Fig.5. Fixed point exists
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Fig. 6. No fixed point
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Fig.7. Several fixed points
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Fig. 8. Stable fixed point
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Fig. 9. Unstable fixed point
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Fig. 10. Discontinuous example
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Cooperative games

Stability of coalitions is important if the number of players
m > 2.
Stability of a coalition depends on the guaranteed payoff of
the coalition and on the partition of this payoff.
A coalition is stable if no changes will provide greater part
of guaranteed payoff.
The guaranteed payoff of a coalition is defined by the
characteristic function.
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Characteristic function

Notation:
S is a set of all players.
A subset s ⊂ S is coalition.
Maximal guaranteed payoff of coalition s

v(s) = maxx miny us(x, y). (277)

Here x = x(s) a strategy of coalition s,
y = y(S \ s), a strategy of coalition of remaining players,
v(s) is characteristic function.
A game v is fixed sum game if

v(s) + v(S \ s) = v(S). (278)

A game is essential if
∑

i∈S

v(i) < v(S). (279)
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Cooperative game, "Three Boys"

Consider three players i = 1, 2, 3 and three coalitions
Sj = 1, 2, 3, where s1 = {1, 2}, s2 = {1, 3}, s3 = {2, 3}. Table
shows parts of player payoffs in different coalitions

u(i, j) =

∣

∣

∣

∣

∣

1 1 −2

1 −2 1

−2 1 1

∣

∣

∣

∣

∣

(280)

Here the characteristic function

v(s) =

{

2, if |s| = 2

−2, if |s| = 1.
(281)

where |s| is a number of players in coalition s.
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Game properties, "Three Boys"

This is fixed sum game since

v(s) + v(S \ s) = v(S) = 0. (282)

The game is essential because
∑

i∈S

v(i) = −6 < v(S) = 0. (283)
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Cooperative game, "Joint-Stock"

Consider stock holders i = 1, 2, 3, 4 and their coalitions sj.
Numbers of stocks g1 = 10, g2 = 20, g3 = 30, g4 = 40.
Coalition sj is wining if Gj > 50, where Gj =

∑

i∈sj
gi. Here

the characteristic function

v(sj) =

{

1, if Gj > 50

0, if Gj ≤ 50.
(284)

v is a fixed sum game since

v(s) + v(S \ s) = v(S) = 0. (285)

v is essential game because
∑

i∈S

v(i) = 0 < v(S) = 1. (286)
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Payoff partition

Notation:
zi is a part of player i in the payoff partition z = (z1, ..., zm), A
partition z is feasible if

∑

i∈S

zi = v(S) (287)

zi ≥ v(i) (288)

A partition z dominate partition w by coalition s
z ≻s w,
if

∑

i∈s

zi ≤ v(s) (289)

zi > wi, i ∈ s (290)

If there is such a coalition s then we say z ≻ w
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Core of game

The core C(v) of the game v is a set of all stable partitions.
A partition is stable if no coalition can offer better partition.
Core provides stability of coalitions since there are no
incentives for changes. In practice it means political and
economic stability.
However there is no core in essential fixed sum games:
C(v) = ∅ if

∑

i∈S

v(i) < v(S),

v(s) + v(S \ s) = v(S).

Such are examples 1 and 2.
In competition models "Nash" and "Walras" the core C(v)
may exist because they both are not fixed sum games
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Shapley vector

If no core exists convenient tool of partition is Shapley
vector. Shapley partition can be stable too if all the payers
understand and agree with the Shapley conditions:

1.
∑

i∈s φi[s] = v(s),
where φi[s] is Shapley partition,

2. φπ(i)[πv] = φi[v], where π is permutation of players,

3. φi[u + v] = φi[u] + φi[v], where u and v are two games.

If these conditions are true then there exists the unique
Shapley partition:

φi[v] =
∑

s⊂S, i∈s,

(|s| − 1)!(|S| − |s|)!/|S|!

(v(s) − v(s \ {i}), (291)
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Shapley vector, relevant coalitions

For a player i relevant are only those coalitions Si that wins
with the player i and loses without this player. Thus a player
i can pretend for a part of payoff of coalition Si
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Shapley partition, "Three Boys"

In the "Three boys" example:
S1 = {{s1, s2}, {s1, s3}, S2 = {s2, s3}, {s1, s2}, S3 =
{s2, s3}, {s1, s3}}.
Here Shapley partition

φi[v] = (2 − 1)!(3 − 2)!/3! +

(2 − 1)!(3 − 2)!/3! = 1/3. (292)
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Shapley partition, "Joint-Stock

In the "Joint Stock" example:
S1 = {1, 2, 3}, S2 = {{1, 2, 3}, {2, 4}, {1, 2, 4}},
S3 = {{1, 2, 3}, {3, 4}, {1, 3, 4}},
S4 = {{2, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}{3, 4}}.

φ1[v] = (2 − 1)!(4 − 1)!/4! = 1/12,

φ2[v] = 2(3 − 1)!(4 − 3)!/4! +

(2 − 1)!(4 − 2)!/4! = 3/12,

φ3[v] = 2(3 − 1)!(4 − 3)!/4! +

(2 − 1)!(4 − 2)!/4! = 3/12,

φ4[v] = 3(3 − 1)!(4 − 3)!/4! +

2(2 − 1)!(4 − 2)!/4! = 5/12.
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Stabilization of partitions

Payoff partitions belonging to the core of game C(v) are
stable without conditions.
Shapley partitions are stable if all the players understand
and agree with Shapley conditions.
That means that players predict correctly the reaction of
their partners and corresponding consequences. That is
not always a practical assumption.
Practically partitions can be stabilized by penalties for "bad"
behavior and bonuses for "good" behavior.
That transforms fixed sum game into non-fixed sum game
with stable core C(v).
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Stabilization of game, "Three Boys"

Introduce in the "Tree Boys" example a "Unity Bonus"-
additional payoff +1 for each "boy" if all three unites to form
a coalition s4 = {1, 2, 3}

u(i, j) =

∣

∣

∣

∣

∣

1 1 −2 1

1 −2 1 1

−2 1 1 1

∣

∣

∣

∣

∣

. (293)

Then the characteristic function

v(s) =











2, if |s|=2
−2, if |s|=1
3, if |s|=3

(294)

Core C(v) = (1, 1, 1) implements the coalition s4 = {1, 2, 3}.

v(s) + v(S \ s) 6= v(S) = 3, |s| < 3. (295)
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Stabilization of game, "Joint-Stock"

If we introduce in the "Joint Stock" game a penalty for
coalitions for braeking the rules of proportional partitions
then the characteristic function

v(sj) =











1, if Gj > 50 and zi ∈ Z, i ∈ sj

0, if Gj > 50 and zi∈̄Z, i ∈ sj

−1, if Gj ≤ 50 and zi∈̄Z, i ∈ sj .

Here Z is a partition of payoff in proportion to stock number.
Here exists core of game C(v) = (10, 20, 30, 40)
implementing the coalition s = {1, 2, 3, 4}.
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AR-ABS models

This is a version of AR (Auto-Regression) model

wt =

p
∑

i=1

aiwt−i + ǫt, (296)

where
wt prediction for tomorrow
wt−1 observed value today,
ǫt random unpredictable variable tomorrow,
ai coefficients of "importance"
defined by minimization of residual

f(x) =
T

∑

t=1

|ǫt|. (297)
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Solving AR-ABS model

We minimize the residual by linear programming

min
a,u

T
∑

t=1

ut (298)

ut ≥ ǫt, t = 1, ..., T, (299)

ut ≥ −ǫt t = 1, ..., T, (300)

ai = a1
i − a2

i , ak
i ≥ 0, k = 1, 2, i = 1, ..., p. (301)
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Last slide

This is the last slide. Do you want to go to the second one?
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