
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

On the Variability of Software Engineering
Needs for Deep Learning: Stages, Trends, and

Application Types
Kai Gao, Zhixing Wang, Audris Mockus,and Minghui Zhou

Abstract—The wide use of Deep Learning (DL) has not been followed by the corresponding advances in software engineering (SE) for
DL. Research shows that developers writing DL software have specific development stages (i.e., SE4DL stages) and face new
DL-specific problems. Despite substantial research, it is not clear how such needs vary over stages, DL application types, or if they
change over time. To help focus research and development efforts on DL-development challenges, we analyze 92,830 Stack Overflow
(SO) questions and 227,756 READMEs of public repositories related to DL. Latent Dirichlet Allocation (LDA) reveals 27 topics for the
SO questions with 19 (70.4%) topics primarily relating to a single SE4DL stage and eight topics spanning multiple stages. Most
questions concern Data Preparation and Model Setup stages. The relative rates of questions for 11 topics have increased, for eight
topics decreased over time. Questions for the former 11 topics had a lower percentage of having an accepted answer than for the
remaining topics. LDA on README files reveals 16 distinct application types for the 227k repositories. We apply the LDA model fitted
on READMEs to the 92,830 SO questions and find that 27% of the questions are related to the 16 DL application types. The
distribution of topics with the most questions vary with application types, with half topics relating to the second and third stages.
Specifically, developers ask the most questions about topics relating to Data Preparation (2nd) stage for four mature application types
such as Image Segmentation, and topics relating to Model Setup (3rd) stage for four application types concerning emerging methods
such as Transfer Learning. Based on our findings, we distill several actionable insights for SE4DL research, practice, and education
such as better support on using trained models, application-type specific tools and teaching materials.

Index Terms—Software Engineering needs for Deep Learning, Topic modeling, Stack Overflow, Mining Software Repositories

F

1 INTRODUCTION

D EEP learning (DL) has achieved tremendous success in
different tasks such as image recognition [1] and object

detection [2] owing to its strong representation capability
and the explosive increase of data and computing power
in recent years. Many DL frameworks (e.g., TensorFlow [3],
Keras [4], and PyTorch [5]) are proposed to help developers
quickly transfer their ideas into applications and are widely
used by developers. Based on the architecture documenta-
tion of various DL frameworks, Han et al [6] found that
to build DL applications with DL frameworks, developers
usually go through seven stages starting from Preliminary
Preparation, to Data Preparation, and to Model Setup, Model
Training, Model Evaluation, Model Tuning, and ending with
Model Prediction as shown in Table 1. In this paper, we refer
to the software development in the DL domain, including
the process consisting of the seven stages as software engi-
neering (SE) for deep learning (SE4DL).

Although DL frameworks facilitate SE4DL, SE4DL still
poses unique problems to developers that differ from reg-

• K. Gao is with the School of Software & Microelectrics, Peking University.
E-mail: gaokai19@pku.edu.cn

• Z. Wang is with the School of Information Science and Technology, the
University of Tokyo.
E-mail: zhixing0@protonmail.com

• A. Mockus is with the Department of Electrical Engineering and Com-
puter Science, University of Tennessee, Knoxville.
E-mail: see http://mockus.org

• M. Zhou is with the School of Computer Science, Peking University.
E-mail: zhmh@pku.edu.cn

ular software engineering. In general, developers use DL
frameworks to define DL model structure and run-time
configurations such as loss function and GPU, then feed
large-scale training data to train (adjust the parameters of)
the model [7], [8]. Developers usually set aside some data
that is not used for training to evaluate and tune the model.
The above process is usually experimental with adjusting
the data, model structure, and run-time configurations in a
trial-and-error manner. As a result, DL developers are faced
with problems across SE4DL stages such as managing large-
scale dataset at Data Preparation stage, designing effective
model structure at Model Setup stage, and specifying efficient
run-time configurations at Model Training stage.

The SE research community has investigated SE4DL
needs in some detail. For example, researchers have exten-
sively analyzed challenges and faults in general without
separating them into SE4DL stages [7], [8], [9], [10], [11],
and investigated deployment challenges and faults at the
model prediction stage [12], [13], [14]. Little work [6], [15],
[16] investigated SE4DL stages. Specifically, Alshagiti et
al. [15] labeled 684 SO questions to stages to investigate
the most challenging stages and Islam et al. [16] manually
labeled 970 bugs collected from SO and GitHub to stages to
reveal bug-prone stages. These two papers were based on
small sample size and didn’t reveal what kind of problems
are at each stage. Although Han et al. [6] applied LDA
on a large-scale dataset collected from SO questions and
GitHub issues, they investigated stages under an improper
assumption that an LDA topic exclusively belongs to one

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

TABLE 1
De�nition of SE4DL stages [6]

Stage Description

Preliminary Preparation Set up environment for using DL
frameworks.

Data Preparation Convert raw data into the format
required by the model.

Model Setup Create neural network model with
APIs provided by DL frameworks.

Model Training
Select loss function and optimiza-
tion method, and feed data to train
models with acceleration devices.

Model Evaluation Evaluate models trained at the pre-
vious stage.

Model Tuning
Fix strange evaluation results and
improve model's performance and
accuracy.

Model Prediction Use tuned model to make predic-
tions on new data.

stage. To prioritize efforts for improving SE4DL, a better
understanding is needed of the problems developers face
at each stage and type of DL application. Furthermore, it
is important to identify what problems have already been
at least partially addressed and to identify the most recent
challenges. Speci�cally, we lack understanding of: (1) how
problems faced by DL developers are distributed over
SE4DL stages, and (2) how these problems vary over time
and application types. Given the rapid development of DL
and its wide adoption in distinct tasks, such understanding
will promote SE4DL research, practice, and education to
meet developers' needs in a more targeted way. It may
help researchers, practitioners, and educators understand
currently urgent SE4DL problems and design automated
tools to mitigate these problems, improve DL framework
APIs and documentation, and design customized teaching
materials for different application types.

To investigate the variability of SE4DL problems we
decide to use two sources of data. First, to understand
problems faced by DL developers, we analyze DL-related
questions from Stack Over�ow (SO). Second, to understand
the variety of DL-related projects, we gather approximately
all public Git repositories and analyze their README �les.
Speci�cally, we answer the following research questions:

RQ1 (Stage variability): How are problems faced by DL
developers distributed over SE4DL stages?LDA reveals 27
topics for 92,830 DL-related SO questions. For each of the
27 topics, we randomly sample 63-67 questions (to obtain
90% con�dence level) and manually label them to SE4DL
stages. In total, 19 topics primarily relate to a single SE4DL
stage and eight topics span multiple stages. The 19 single-
stage topics cover all seven SE4DL stages and the eight
multiple-stage topics are mainly about framework APIs and
application tasks. Overall, developers ask the most about
the second (Data Preparation) and third (Model Setup) stages
with 23.3% and 30.7% questions respectively, in contrast to
the former study that found the �rst (Preliminary Preparation)
and fourth (Model Training) stages to be the stages with the
most questions [6].

RQ2 (Time variability): How do these problems vary over
time? We apply the Mann-Kendall trend test to identify the

Fig. 1. Overview of Methodology.

change of relative rate of questions for each question topic.
We �nd the relative rates of questions for 11 topics have
increased, for eight topics decreased over time. Questions
for the 11 trending up topics had a lower percentage of
having an accepted answer than for the remaining topics.
The topics that increase the most (indicated by Sen's slope)
are Code Error, Training Anomaly, Model Load, and Model
Conversion, and the topic that decreases the most is Graph
Session. The topic developers ask the most questions about,
Installation Error hasn't increased or decreased signi�cantly
over time.

RQ3 (Application variability): How do these problems
vary over application types?We apply LDA on README
�les of 227k repositories and identify 16 distinct application
types. We apply the obtained LDA model �tted on the 227k
README �les to relate the SO questions to application
types. We �nd that the distribution of topics with the
most questions vary with application types, with half topics
relating to the second and third stages. Speci�cally, devel-
opers ask the most questions about topics relating to Data
Preparation(2nd) stage for four mature application types
such as Image Segmentation, and ask the most questions
about topics relating to Model Setup(3rd) stage for four
application types concerning emerging methods such as
Transfer Learning.

In addition to answering these RQs that reveal the
varied and interconnected landscape of DL development
stages, developer needs, and DL applications types, our
contributions include a comprehensive set of topics based
on a careful LDA analysis of DL-related SO questions and
repository READMEs, the use of themes for application
types derived from repositories to classify SO questions,
and other methodological robustness improvements to the
notoriously dif�cult topic analysis area. We believe that our
approach of using all public data to investigate an area of
software development could be applied not just on SE4DL
problems but more generally. Finally, based on our �ndings,
we distill several actionable insights for SE4DL research,
practice, and education.

The rest of the paper is organized as follows. The data
collection, data preprocessing, and topic modeling processes

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

are described in Section 2. Section 3, Section 4, and Section 5
present the methods and results for the three research
questions respectively. Section 6 discusses the implications
for SE4DL research, practice, and education. We discuss
limitations in Section 7 and review the related work in
Section 8. Finally, we conclude the paper in Section 9.

2 DATA PREPARATION

This study is conducted following the process depicted in
Figure 1. We select TensorFlow, Keras, and PyTorch for this
study for three reasons:

1) They are under active development allowing us to
observe recent trends and to ensure the timeliness
of the results;

2) The increasing numbers of downstream repositories
and Stack Over�ow questions better approximate
current and emerging practical problems and appli-
cation types;

3) They cover a broad range of DL framework im-
plementations that representing past and emerging
usage scenarios.

For these frameworks, we collect questions at Stack
Over�ow (SO) and README �les of public repositories as
described in Section 2.1, that represent the problems DL de-
velopers ask about and the application types DL developers
work on. We then preprocess these artifacts (Section 2.2)
and perform topic modeling with LDA on questions and
READMEs respectively (Section 2.3). Our data and scripts
can be accessed at: https://github.com/KyleGau/SE4DL.

2.1 Data Collection

2.1.1 SO Data

SO is commonly used in research to understand problems
faced by developers [8], [13], [17], [18], [19]. We downloaded
a complete Stack Over�ow Posts dataset from the of�cial
Stack Exchange Data Dump1, which contains SO posts
created from July 31, 2008, to March 1, 2021. It contains
two types of posts: questions and answers. In this study,
we focus on questions to gauge developers' needs. Each
question may have one to �ve tags indicating related con-
cepts and technologies. We regard a question as a DL-related
question if at least one of its tags is “tensor�ow”, “keras”,
or “pytorch”, resulting in 92,830 DL-related questions. The
Questions column of Table 2 shows the number of questions
related to each framework.

Figure 2(a) shows the number of quarterly created ques-
tions related to each framework. All three frameworks are
trending up over the years with minor differences. This
suggests that either more DL developers are using SO
over time or existing developers encounter new problems.
TensorFlow questions show a sharp increase before 2017Q2,
followed by two peaks in 2018Q2 and 2020Q2 respectively.
The peaks may be related to the releases of TensorFlow 1
and TensorFlow 2 which introduced many breaking changes
and sparked many questions initially. Once the number
of questions accumulates to a certain level, the number

1. https://archive.org/details/stackexchange

TABLE 2
Statistics of Collected Data

Framework Questions Repositories READMEs
Raw Preprocessed

TensorFlow 67,400 568,182 237,689 127,836
Keras 34,002 402,774 176,692 95,185
PyTorch 10,986 294,480 124,991 63,999

Total 92,830 998,514 429,204 227,756

(a) Trend of questions (b) Trend of repositories

Fig. 2. The trend of quarterly created DL-related questions and reposi-
tories.

of new questions gradually decreases and stabilizes. Keras
questions also show a peak in 2020Q2 partly because it
comes packaged with TensorFlow 2 [20]. PyTorch questions
keep increasing and stabilize after 2020Q2.

2.1.2 WoC Data
To investigate how problems faced by developers vary
over application types (RQ3), we need to address two
challenges: identifying application types and relating SO
questions to application types. We apply LDA on README
�les of collected repositories to identify application types
of the repositories. Then, we use the �tted LDA model on
README �les to infer the application types of SO questions.
Repositories (many of which are on GitHub) have tags or
labels and README �les that represent a natural language
description of the project. Both could be used to identify
application types. There are, however, several advantages of
using READMEs instead of repository labels: 1) It allows us
to analyze more DL-related repositories to mitigate sample
bias since the ratio of repositories with READMEs is much
higher than that of repositories with labels (0.3% based on
GHTorrent [21]'s latest dump (March 6, 2021)). 2) READMEs
are more suitable to be fed to LDA to �t a model as
LDA performs poorly in short text [22] and README �les
usually contain more words than labels.

We use WoC to collect public repository READMEs
needed in this study. WoC 2 is an infrastructure for mining
the universe of open source version control system
(VCS) data. It collects Git objects [23] of open source
repositories across code hosting platforms, curates the
collected data by, for example, deforking repositories
and parsing dependencies from each version of source
code �les (technical dependencies), and provides a
variety of ways to query the data. We use WoC query 3

to identify all versions of all �les that import packages

2. https://worldofcode.org/
3. https://github.com/woc-hack/tutorial#

activity-6-investigating-technical-dependencies

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Fig. 3. A technical dependency record that imported TensorFlow (we
hide author information for the sake of privacy).

associated with at least one of the frameworks we
study (TensorFlow, Keras, and PyTorch). The format of
a technical dependency record is: commit;repository
excluding forks;timestamp;author;blob;language
used in WoC;language determined by ctags 4;fil-
ename;modules separated by semicolon . An example
technical dependency record which imported TensorFlow is
shown in Figure 3. We regard a repository as a DL-related
repository if it contains a blob that utilizes one of the
three DL frameworks, i.e., TensorFlow (import name is
tensorflow), Keras (import name is keras), and PyTorch
(import name is torch). This results in 998,514 DL-related
repositories as shown in the Repositories column of
Table 2. The identi�ed DL-related repositories cover a broad
spectrum of programming languages such as Python, Java,
and Go and spread multiple platforms such as GitHub,
Bitbucket, and GitLab. In this study, we use the latest
version of WoC, which was labeled as ”T” and collected
data up to February 2021.

Figure 2(b) shows the number of quarterly created repos-
itories importing the three frameworks. Like SO questions,
the numbers of repositories importing the three frameworks
all increase. Notably, the number of repositories importing
TensorFlow grows faster than Keras between 2019Q3 and
2020Q1. It may be because that Keras comes packaged with
TensorFlow 2 as tensorflow.keras [20] so that Keras
users have to import TensorFlow to use Keras since Ten-
sorFlow 2. The number of repositories importing PyTorch
keeps rapidly increasing, in line with the trend of PyTorch
questions.

We also use WoC to overcome the time and space
consumption challenges of obtaining these near 1M repos-
itories' READMEs. We �rst retrieve the latest commit for
each repository, then we obtain each repository's root folder
structure from the tree object pointed by the latest commit.
Finally, we check if “README.md” is contained in the root
folder. If contained, we retrieve its content by its SHA-1
hash. Using this algorithm, we �nd 525,451 distinct reposi-
tories containing README.md in WoC ”T” version.

2.2 Data Preprocessing

We preprocess collected SO questions and public repository
READMEs to make the data suitable for LDA analysis.

2.2.1 SO Questions

As in prior work [6], [17], [18], [19], we preprocess SO
questions' title and body: (1) remove code snippets marked
with <code></code> or <blockquote></blockquote> ;
(2) remove HTML tags such as paragraph <p></p> and
URLs <a> ; (3) remove numbers, punctuation, and other
non-alphabetic characters; (4) remove stop words such as

4. https://github.com/universal-ctags/ctags

'a' with Mallet's English stoplist [24]. We also extend this
stoplist with 'tensor�ow', 'keras', and 'pytorch'; (5) bigram
model is built using Gensim 5 since bigram model could
improve the quality of text processing as reported by Tan
et al. [25]; (6) Snowball stemmer provided by NLTK 6 is
applied to reduce words to their stemmed representations,
for example, “install”, “installation”, and “installing” are all
stemmed to “instal”.

2.2.2 Repository READMEs

README �les contain not only information related to the
functionality of a repository which we use to determine
the application type of the repository's code, but also infor-
mation related to installation, requirements, etc. [26], [27].
Since LDA is sensitive to input data, it's important to locate
relevant information in README �les. To accomplish that,
Sharma et al. [26] extracted sections that are most similar
to the repository description presented on its homepage.
However, such description is optional and many reposito-
ries don't have one. We, therefore, conduct a preliminary
study to investigate which section 7 of README describes
the repository's functionality without referring to an exter-
nal resource such as repository description. To accomplish
that, we sample 384 READMEs (the number was chosen
to be able to obtain a 95% con�dence interval 8). The �rst
two authors independently checked which section contains
the description of the repository's functionality separately.
The Kappa value [28] between the two authors is 84%,
which indicates an almost perfect agreement. We then held
a meeting to resolve the inconsistencies. We �nd 8.1% (31)
of READMEs to be written in non-English languages. Of
the remaining 353 READMEs, 14.7% (52) don't contain
information about the repository's functionality, and 84.4%
(298) READMEs have descriptive text on functionality in
their �rst or second sections.

Based on the preliminary study, we exclude non-English
READMEs with langid 9 and 429,204 READMEs remain as
shown in the Raw column of Table 2. We then extract the
�rst two sections of the remaining READMEs and prepro-
cess the extracted text (We also refer to the extracted text
as README in the following). As open source repositories
serve other purposes besides software development [29], we
remove READMEs that contain words explicitly indicating
that the repository is not for software development such
as “tutorial” and “mooc”. Then we preprocess the remain-
ing READMEs: remove code snippets enclosed between
` ; remove URLs, numbers, punctuation, and other non-
alphabetic characters; remove stop words, build bigram
model, and stem words the same as Section 2.2.1. After
removing empty preprocessed READMEs, 227,756 remain
as shown in the Preprocessedcolumn of Table 2.

5. https://radimrehurek.com/gensim 3.8.3/
6. https://www.nltk.org
7. Following prior work, we de�ne a section as the text in between

two successive headers in a README �le. And a header is included in
the section behind it.

8. https://www.surveysystem.com/sscalce.htm
9. https://github.com/saffsd/langid.py

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

2.3 Topic modeling

Topic modeling is an unsupervised text-mining technique
that automatically discovers hidden semantic structures
(i.e., topics) in a text corpus. LDA (Latent Dirichlet Alloca-
tion) [30] is an extensively used topic modeling method in
SE research community [15], [17], [18], [19], [26], [31], [32],
[33], [34], [35]. We apply LDA on the preprocessed question
corpus and README corpus respectively to identify ques-
tion topics asked by DL developers and application types
DL developers work on. We elaborate on how we �t LDA
models and label LDA topics in the following.

2.3.1 Fitting LDA Models

LDA posits that each document in the corpus is modeled
as a �nite mixture over an underlying set of topics and
a topic is modeled as a �nite mixture over words in the
corpus. Then it builds a model based on word frequencies
and word co-occurrences to estimate the two distributions
— document-topic distribution and topic-word distribution.
We use Gensim's Python wrapper for Mallet LDA 10, which
implements LDA with Gibbs sampling and is commonly
used in previous work [17], [18], [19]. We set a constant ran-
dom seed for the Gibbs sampler to eliminate the instability
introduced by Gibbs sampling.

LDA requires multiple parameters to work well [35],
[36], [37], [38]: a) topic number K ; b) iteration number
I in Gibbs sampling; c) the parameter ~� for the prior
distribution of document topics; d) the parameter ~� for the
prior distribution of topic words. Earlier work [39] shows
that an asymmetric (i.e., topics have different values) ~�
and a symmetric (i.e., all words share the same value) ~�
could increase the robustness of LDA to variations in the
number of topics and the highly skewed word frequency
distributions. We, therefore, use Mallet's hyperparameter
optimization to allow the model to learn asymmetric ~� and
symmetric ~� from the corpus 11. We set optimization every
10 iterations as suggested by Mallet.

Several heuristics have been proposed to tune LDA
parameters such as Genetic Algorithms (GA) [36], Differ-
ential Evolution (DE) [37], and the iterated f-race procedure
(irace) [35]. Several �tness functions are also proposed to
measure how the LDA model �ts the data such as perplex-
ity [40], topic coherence [41], silhouette coef�cient [36], and
raw score R n [37]. However, a recent study [38] reveals no
heuristic and/or �tness function outperforms all the others.
We use the heuristic GA which searches for the optimal
solution by simulating the natural evolutionary process, and
�tness function topic coherence (Cv) which measures the
understandability of topics generated by LDA, to tune the
remaining two parameters K and I for two reasons: 1) GA
is widely used in SE community to tune LDA parameters
on SO questions and repository READMEs [26], [33], [36],
which are corpus also used in our study to identify question
topics and application types. 2) Cv has been proved to be
highly correlated with human's judgment [42] and is widely
used in recent SE studies [6], [18], [19], [43]. The tuning

10. https://radimrehurek.com/gensim 3.8.3/models/wrappers/
ldamallet.html

11. http://mallet.cs.umass.edu/topics.php

Fig. 4. Raw score R n of tuned LDA for question corpus and README
corpus.

process is as follows: GA �rst generates p different param-
eter con�gurations (called population); for each parameter
con�guration, it runs LDA and computes the Cv score of the
�tted LDA model; according to the p Cv values, GA gener-
ates new con�gurations and repeats the above step (begin a
new generation); with the generations evolving, better and
better parameter con�gurations emerge. We use Pyevolve 12

implementation of GA. We set the LDA parameter search
space asK 2 [5; 50]; I 2 [500; 2000]. We set both population
size and generation size to 100 to ensure suf�cient con�gu-
rations are explored following prior work [26], [36].

The optimal parameter con�guration for question corpus
and README corpus is K = 27; I = 772 and K = 26; I =
891 respectively, and the corresponding Cv values are 0.62
and 0.59. We then assess the stability of the two tuned LDA
models as found by Agrawal et al. [37] that LDA suffers
from order effects [44]. We use the metric, raw score R n
proposed by [37] to measure LDA stability. R n denotes the
median number overlaps of topic size with n words across
multiple LDA runs. We set 1 � n � 9 following prior work.
For each corpus (question corpus and README corpus),
we calculate R i ; i 2 [1; 9] as follows. We run LDA 10 times
with corresponding optimal K and I, each time shuf�ing
the corpus, then we calculate R i in the 10 runs. We repeat
the above process 10 times to avoid any sampling bias and
choose the median of the 10R i scores. The results are shown
in Figure 4. Overall, all R i scores are no less than 50%
for each corpus. Speci�cally, when reporting topics of up
to nine words, in half cases, all the topics can be found in
models generated using different input orderings, which is
considered stable according to [37]. Therefore, we use the
top nine words of each topic to label topics as described in
Section 2.3.2.

2.3.2 Labeling LDA Topics

LDA generates topics represented as a probability distri-
bution over words but topics' actual meaning is subject to
interpretation. Often the most likely words set for the topic
are used to assign a subjective label. In our approach, which
is much more effort-intensive but also much more likely to
lead to meaningful labels, we also use the full documents
(SO questions and README �les) strongly exhibiting the
topic. Speci�cally, to label these topics, we follow the general
procedure of open card sort, which is frequently used to
label LDA topics in SE research (e.g., [17], [18], [19]). In
open card sort, there are no prede�ned topic names, and

12. https://github.com/BubaVV/Pyevolve

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 3
Stages, Names, question count, percentage of questions having an accepted answer (% acpt) , adjusted p-values, trend, and Sen's slope for 27

question topics sorted by stages and question count. The Adjusted P-value column presents the p-values adjusted by Holm–Bonferroni
method [45]. '" ', '#', and '–' in the Trend column denote increasing, decreasing, and unchanging trend respectively.

Stages Topic Name Count % acpt Adjusted P-value Trend Sen's Slope

Preliminary Preparation
Installation Error 6556 29.9 1.0 – -9.03e-05

Build Error 3299 30.1 0.00029 # -1.93e-04

Data Preparation

Tensor Operation 4163 51.3 1.5e-06 # -2.79e-04

Image Preprocessing 3500 37.7 4.8e-07 " 3.00e-04

Data Type 3376 42.3 1.0 – 7.90e-05

Data Load 3278 35.4 1.0 – -6.46e-05

Data Batch 2623 38.4 1.0 – -2.69e-06

Model Setup

Model Load 5225 35.8 2.5e-09 " 4.28e-04

Graph Session 4021 40.5 0.0 # -1.16e-03

Layer Operation 3459 43.9 1.0 – 4.72e-05

Tensor Shape 3455 45.3 0.0032 " 1.54e-04

Probability 3373 37.9 0.0061 # -1.86e-04

LSTM 2426 35.9 0.00040 # -2.55e-04

Embedding 2218 31.3 1.0 – 3.25e-05

Model Training
Loss Function 4333 38.4 0.034 " 1.49e-04

Device Use 3963 28.3 2.3e-06 # -2.90e-04

Model Evaluation Evaluation Metrics 3398 35.9 5.2e-10 " 3.41e-04

Model Tuning Training Anomaly 3724 33.3 3.2e-12 " 4.69e-04

Model Prediction Model Conversion 2601 25.7 1.4e-13 " 4.20e-04

Multiple-Stage Topics

Code Error 5818 34.4 7.1e-12 " 5.75e-04

API Usage 4473 40.5 9.2e-10 # -4.70e-04

Review 3822 42.0 0.0096 # -1.34e-04

API Misuse 2608 37.0 0.00012 " 1.74e-04

Classi�cation 2198 39.3 1.0 – 7.00e-05

Reinforcement Learning 2150 38.6 0.16 – -9.37e-05

Object Detection API 1976 25.1 0.0012 " 3.59e-04

Error Traceback 794 24.1 0.15 – 5.69e-05

topic names are developed during the labeling process. We
�rst assign each document to the topic with the highest
probability in its topic distribution. Then the �rst two au-
thors, who have three and four years of DL experience
respectively, manually inspect each topic's top nine words
and read through 30 randomly selected documents assigned
to that topic to come up with a topic name that best explains
the words and documents of that topic. The process is
iterative where the authors individually perform labeling,
jointly unify topic names, discuss con�icts, and re�ne topic
names until they agree on topic names. An arbitrator, who
has �ve years of DL experience and is skilled at all the
three frameworks, is invited to review the topic names.
The arbitrator is someone external to the project. He agreed
with most (49/53) topic names and provided better phrasing
suggestions for the remaining four topics. These suggestions
are discussed and integrated into �nal topic names. For
example, one question topic was initially labeled as Dataset,
after checking its top nine words and the 30 randomly se-
lected documents assigned to it, he suggested thatData Load
is clearer. After a discussion, we adopted his suggestion.

3 RQ1: HOW ARE PROBLEMS FACED BY DL DE-
VELOPERS DISTRIBUTED OVER SE4DL STAGES?

3.1 Methods

LDA reveals 27 topics for the 92,830 SO questions shown
in the Topic Name column of Table 3. The number of
questions assigned to each topic is shown in the Count
column. We also calculate the percentage of questions hav-
ing an accepted answer for each topic shown in the %
acpt column. We use the seven DL development stages
proposed previously [6] as shown in Table 1. The stages
were derived by analyzing the architecture documentation
of several DL frameworks. To relate question topics to
SE4DL stages, we manually label 1797 randomly sampled
questions. Speci�cally, we determine the sample size based
on the 90% con�dence level, resulting in 63 to 67 questions
for each question topic. Then, the �rst two authors manually
label the 1797 questions to SE4DL stages independently
following the de�nition of stages as described in Table 1. The
Kappa value between the two authors is 82%, reaching an
almost perfect agreement. The inconsistencies are resolved
through discussion. If more than two-thirds of sampled
questions of a topic relate to the same stage, we refer to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

Fig. 5. The occurrence of sampled questions at each SE4DL stage for each question topic. The horizontal axis represents question topics and the
vertical axis represents SE4DL stages. Single-stage topics are arranged by the stage and question count. Multiple-stage topics are arranged by
question count.

that topic as a single-stage topic primarily relating to the
stage. Otherwise, we refer to the topic as a multiple-stage
topic. The threshold we choose, 2/3, is a commonly used
supermajority rule for voting in various government and
social organizations [46]. We denote the 27 question topics
as t1; t2; :::; t27 respectively and the seven stages ass1; :::; s7
respectively. We denote ratio (t i) as the ratio of questions
assigned to t i over all (92,830) questions andratio (t i ; sj) as
the ratio of questions relating to sj in the sampled questions
of t i , then we estimate the ratio of questions relating to si as
ratio (si) =

P 27
k=1 ratio (tk) � ratio (tk ; si).

3.2 Results

Figure 5 shows the occurrence of the 1797 sampled ques-
tions in the SE4DL stages. All the 27 question topics have
different distributions over stages, and none are exclusive
to one stage as was assumed in prior work [6]. In total 19
question topics primarily relate to a single SE4DL stage (but
occasionally they relate to other stages), and eight topics
span multiple SE4DL stages. Among the 19 single-stage
topics, the primary stages of 13 topics account for over 90%
of the sampled questions. For the remaining 6 topics, after
excluding the questions related to their primary stages, none
of the rest stages dominate (i.e., account for over 2/3 (i.e.,
supermajority) of) the remaining questions.

The 19 single-stage topics have their primary SE4DL
stages ranging from the �rst to the last. Installation Error
and Build Error are topics primarily relating to the 1st
stage, Preliminary Preparation. The Installation Error topic
takes the most questions (6,556, 7.1%) in all topics. And
both topics have relatively low % acptwith only 29.9% and
30.1% questions having an accepted answer respectively,
indicating that developers fail to get good answers, possibly
suggesting that their presumably novice questions may be
poorly formulated [47]. Overall developers ask about 13.3%
questions about the 1st stage concerning the setup of en-
vironment. DL frameworks may try to ease the procedure
of setting up environment and help developers focus on
actually using DL frameworks.

Developers ask about 23.3% (the second most) ques-
tions about the 2nd stage, Data Preparationwith �ve top-
ics primarily relating to it: Tensor Operation, Image Prepro-
cessing, Data Type, Data Load, and Data Batch. This stage
usually involves loading raw data into the program, per-
forming data preprocessing and augmentation, converting
data to correct format, and �nally generating data batch for
training and evaluation. Although DL frameworks provide
functionalities to facilitate this procedure, developers face
various problems using these functionalities. For exam-
ple, in Question 49034250, a developer asked “Does Keras
�ow from directory iterate through every sample in a directory?”
when using Keras's ImageDataGenerator module. Tensor
Operationhas the highest % acpt, and is the most common
among the �ve topics of the 2nd stage. The high % acpt
suggests that such questions may be suf�ciently well for-
mulated to result in an acceptable answer. The relatively
high number of such questions suggests that even such a
simple topic as tensor operations is not completely obvious
and well understood by DL-developer or that its implemen-
tation in the considered frameworks may be problematic.
Such problems are likely to be alleviated by improving DL
frameworks' documentation.

Developers ask the most (30.7%) questions about the
3rd stage, Model Setupwith seven topics primarily relating
to it, including Graph Sessionwhich asks how to operate
static computation graphs, Model Loadwhich discusses how
to correctly load pre-trained models, Layer Operationwhich
asks how to create and link various neural layers, Probability
which discusses issues on how to manipulate probability
distributions and emerging probabilistic modeling, Tensor
Shapewhich includes questions about how to correctly �t
tensor shape into layers, and two kinds of neural layers
LSTM and Embedding. Speci�cally, developers ask the most
about Model Loadtopic in the seven topics with 5225 (5.6%)
questions. Considering the high frequency of questions on
the topic, a better support on loading pre-trained and com-
patible models is urgently needed.

Developers ask � 14.4% questions about the 4th stage,
Model Trainingwith two topics, Loss Function,and Device Use,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

primarily relating to it, indicating that developers mainly
have problems with creating custom loss functions and con-
�guring computing resources correctly and ef�ciently at this
stage. The last three stages have only one topic primarily
relating to them respectively. Speci�cally, Evaluation Metrics
questions on how to evaluate DL models primarily relate
to the 5th stage, Training Anomaly questions on how to �x
abnormal training results primarily relate to the 6th stage
(Model Tuning), and Model Conversionquestions on how to
correctly convert trained models for deployment primarily
relate to the last stage (Model Prediction). Overall, developers
ask about 6.9%, 6.7%, and 4.8% questions about the last three
stages respectively.

The remaining eight question topics span multiple stages
including �ve topics related to framework APIs (Code Error,
API Usage, API Misuse, Object Detection API, and Error Trace-
back), two topics related to application tasks (Classi�cation
and Reinforcement Learning), and Review.

The �ve multiple-stage topics relating to framework
APIs re�ect the common needs for easier-to-use DL frame-
work APIs across different stages. Speci�cally, questions
in Code Errortopic spread all stages and occur the most
at Model Setupand Model Training stages. Developers usu-
ally provide code and error messages in questions, e.g.,
Keras 'InputLayer object has no attribute 'inboundnodes' when
converting to CoreML(Question 48329150), indicating they
fail to debug errors from the error messages. About half
of API Usagequestions relate to Model Setupstage which
discuss how to implement something using a speci�c API
or errors when using a speci�c API. For example, de-
velopers are frequently confused about the difference be-
tween APIs in torch.nn and torch.nn.functional (e.g.,
Question 63826328) where they provide the same function-
ality but in different ways with the former in class-style and
the latter in function-style. Besides, developers asking API
Usagequestions appear to be predominantly novices: among
the 67 sampled questions, ten questions occurred when
developers were running tutorial code and nine questions
explicitly contain “I am new”-like phrases. This �nding
indicates that, perhaps not surprisingly, novices have the
greatest challenges in understanding APIs from the docu-
mentation. Questions in Object Detection APItopic discusses
the use of TensorFlow Object Detection API13 and mainly
span Model Setupand Model Evaluationstages. Developers
usually draw bounding boxes (or frames) in images to show
the detected objects according to the coordinates produced
by the model at Model Evaluation stage. But they face
various questions in the procedure such as How to output
box coordinates produced from Tensor�ow Object Detection API
(Question 48284800).

Topics of (Classi�cationand Reinforcement Learning) span-
ning multiple stages relate to application tasks. For Clas-
si�cation topic, developers mainly have problems with the
second to the �fth stage. Developers ask questions about
how to deal with imbalanced data at Data Preparationand
Model Setupstage. At Model Training stage, developers ask
about the use and differences of various loss functions
such as categorical cross entropy and binary cross entropy.

13. https://github.com/tensor�ow/models/tree/master/research/
object detection

At Model Evaluationstage, developers ask about how to
interpret model output such as How to set a different thresholds
for each class in multi-label classi�cationin Question 62439043.
Questions of Reinforcement Learningtopic mainly span Pre-
liminary Preparation, Model Setup, and Model Tuning stages.
For Review topic, developers mainly seek practices and
suggestions about the �rst three stages when applying DL
in practice.

Unlike the �nding reported by prior work [6] that de-
velopers ask the most questions about Preliminary Prepa-
ration and Model Training stages, we �nd that developers
ask the most questions about Data Preparationand Model
Setupstages. Besides, [6] reports no topic in Model Tuning
stage, while we obtain a topic, Training Anomaly, primarily
relating to this stage. Two reasons may attribute to such
differences. One, prior work assigned each topic to a single
stage, while we �nd that a topic may span multiple stages;
Two, prior data was collected before April 2018 while our
data is collected before March 2021. Over three years some
changes may have taken place in the DL domain with the
advent and improvement of supporting tools and theories.
Therefore, developers' questions about SE4DL stages may
have changed markedly. We, therefore, further investigate
the time variability of SE4DL needs in RQ2.

Summary for RQ1:

None of the 27 question topics revealed by LDA for SO
questions are exclusive to one stage as was assumed
in prior work. In total 19 topics primarily relate to
a single SE4DL stage and eight topics span multiple
stages. The 19 single-stage topics cover all seven SE4DL
stages and the eight multiple-stage topics are mainly
about framework APIs and application tasks. Overall,
developers ask the most about the second (Data Prepa-
ration) and third stages (Model Setup) with 23.3% and
30.7% questions respectively, in contrast to the former
study that found the �rst (Preliminary Preparation) and
fourth (Model Training) stages to be the stages with the
most questions [6].

4 RQ2: HOW DO THESE PROBLEMS VARY OVER

TIME?
4.1 Methods

For the 27 SO question topics identi�ed in Section 3.2,
we calculate each topic's relative rate over time where the
total number of questions assigned to each question topic
is compared to the total number of DL-related questions
for each month. We then use Mann-Kendall trend test (MK
test) [48] to identify the trend, i.e., the change of relative rate,
of the 27 question topics at 0.05 signi�cance level following
prior work [18]. MK test is a non-parametric test used to
identify monotonic trend in a series and is not affected by
the length of series. We also use Theil-Sen's slope estimator
(Sen's slope) [48] to measure the magnitude of monotonic
trend, which is often used together with MK test. Since
we perform 27 MK tests, we adjust the p-values using the
Holm–Bonferroni method [45] to control the family-wise
error rate, which has been widely used in SE studies [49],
[50], [51], [52].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

4.2 Results

The Trend column in Table 3 presents the trend of question
topics identi�ed by MK test based on the adjusted p-values
shown in the Adjusted P-value column. There are three
kinds of trends: increasing, decreasing, and unchanging
(neither decreasing nor increasing at 0.05 signi�cance level).
The Sen's Slope column in Table 3 shows the measured
magnitude of the trend for each topic. Figure 6 presents the
trend distribution of question topics. As Figure 6 shows,
topics primarily relating to the �rst three stages mainly (11
out of 14) show unchanging or decreasing trends, and the
three topics primarily relating to the last three stages all
show increasing trends. Overall, eleven, eight, and eight
question topics increased, decreased, and didn't change over
time respectively.

Increasing Trend.Seven among eleven increasing topics
are single-stage topics including Image Preprocessingprimar-
ily relating to Data Preparationstage,Tensor Shapeand Model
Load at Model Loadstage, Loss Functionat Model Training
stage, and the rest three primarily relating to the last three
stages. Training Anomaly has the second-highest increasing
rate and has 33.3% questions with an accepted answer.
This suggests that problems encountered during the tuning
stage are becoming relatively more common and are less
likely to receive an answer, possibly because that developers
don't know what context would be helpful to �x these
problems. Model Load increases at the third-highest rate
and developers ask the second most (5,225, 5.6%) questions
about it, suggesting that developers' increasing needs for
using pre-trained models are not well met by existing DL
frameworks. Developers mainly have two kinds of prob-
lems about using pre-trained models. On one hand, as
revealed by [8], developers often face inconsistent behavior
after loading pre-trained models due to the difference in
frameworks, platforms, or framework versions. On the other
hand, developers struggle with current procedure of loading
pre-trained models. For example, a developer asked How
to read keras model weights without a modelbecause loading
a pre-trained model assumes that its model architecture
exists but the developer didn't know the architecture. In this
case, DL frameworks may provide more �exible support
on loading pre-trained models to ease the procedure. Model
Conversionhas the fourth-largest increase with only 25.7%
questions in this topic having an accepted answer (the
3rd lowest), indicating developers are increasingly using
or have more issues with Model Conversiontechnique and
also have dif�culty obtaining solutions on SO. As revealed
in [13], developers' demand to deploy DL software to spe-
ci�c platforms for prediction is increasing. Although some
tools such as TFLite, CoreML, and ONNX are rolled out
to facilitate the deployment process, the model conversion
support across platforms and frameworks appears to be
incomplete [13], which possibly results in the increasing
relative rate of Model Conversionquestions. An abstract
of model format conformed by different frameworks and
platforms may alleviate this problem.

The remaining four topics with increasing rates represent
half of the multiple-stage topics and are all concerned with
framework APIs, including Code Error, API Misuse, Object
Detection API, and Error Traceback. The Code Errortopic has

Fig. 6. Trend of single-stage topics grouped by stages and multiple-stage
topics.The horizontal axis represents SE4DL stages and multiple-stage
topics and the vertical axis represents trend.

the highest Sen's slope of 5.75e-04. We �nd the rapid
increase periods of Code Errorquestions overlap with the
major release time of TensorFlow. Speci�cally, a rapid in-
crease occurred in the �rst half of 2017 which rises from 4.6%
to 6.6% (177 to 502 in absolute count) in terms of half-yearly
ratios. TensorFlow 1.0 was released in February 2017 [53].
The second rapid increase occurred in the second half of
2019 with the rate increasing from 6.5% to 7.9% (649 to 768 in
absolute count). TensorFlow 2.0 was released in September
2019 [54]. According to Table I and Table II in [55], DL frame-
works release frequently with many breaking changes that
affect many projects, which undoubtedly increases the cost
of mastering DL frameworks and result in many questions
related to API errors and misuses. It appears DL frameworks
need to improve their backward compatibility. The Object
Detection API topic has the �fth largest increase with only
25.1% questions having an accepted answer (the 2nd least),
suggesting developers have substantial dif�culties in using
TensorFlow Object Detection API and also face dif�culties
obtaining a solution on SO. Developers may lack adequate
documentation when using these APIs, which may explain
the increase and low % acpt of this topic. For example, in
Question 49148962, a developer asked for Tensor�ow object
detection con�g �les documentationand complained I could
not �nd any documentation or tutorial on the options for these
con�g �les though. TensorFlow Object Detection API only
provides documentation in the form of markdown �les in
its repository 14, which may be harder for developers to �nd
and use. Therefore, TensorFlow may consider improving
the readability and usability of the Object Detection API
documentation.

Decreasing Trend.The decreasing-rate topics include six
single-stage topics and two multiple-stage topics. Notably,
half (3/6) of decreasing-rate single-stage topics primarily
relate to Model Setupstage. These decreasing-rate topics may
indicate that developers' needs may have been met over
time. Not surprisingly, substantial efforts have been devoted
to improving DL frameworks. Studies reported by [7], [8]
show that the static computation graph adopted by Tensor-
Flow 1 was a major root cause of common programming is-
sues. TensorFlow 2 introduced dynamic computation graph
(i.e., eager execution) as a default option which may help set
up and debug models [54]. The impact of this improvement
is supported by our analysis as well. For example, Graph
Sessionquestions have the largest decrease.

14. https://github.com/tensor�ow/models/tree/master/research/
object detection/g3doc

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

Unchanging Trend.The topics exhibiting no trend are
mainly (6 of 8) related to the �rst three stages, with three
topics at the Data Preparationstage. The lack of change for
some of the topics may be not the direct fault of the lack
of improvements in frameworks but may be attributed to
the third-party libraries. The topic that developers ask the
most questions about, Installation Error, is often resulted
from intricate third-party dependencies of DL frameworks.
Even when an error occurs, developers may not be able to
diagnose the causes from the traces reported by the frame-
work. For example, some Installation Error questions are
caused by version incompatibilities between dependencies
such as the incompatibility between CUDA v9 and Ubuntu
14.04 (Question 54021556). Data Typetopic involves conver-
sion and operation among different data types supported
by DL frameworks and other libraries such as Numpy.
But developers, especially beginners, usually lack a clear
understanding of the subtle differences between different
data types and the data type requirements of operators.
For instance, a typical error occurs when developers use
the image transformations provided by PyTorch's torchvi-
sion library. Most transformations accept input of both PIL
Image type and PyTorch Tensor type and return the same
type as input. But some only accept one of the two types,
e.g., Normalize . Therefore, developers should convert Py-
Torch tensors to and from PIL images with ToPILImage
and ToTensor according to the transformation requirement.
Otherwise, an error would occur. For example, a developer
encountered a TypeError because he fed Resize 's output
which is PIL Image type directly to Normalize which only
accepts input of Tensor type. A possible solution is to
improve the compatibility between DL frameworks and
third-party libraries.

If comparing all the topics, questions for the increasing-
rate topics are less likely to receive an accepted answer than
for the unchanging- and decreasing-rate topics indicated
by % acpt. In particular, the mean/median % acpt for the
increasing-rate topics is 35.3%/35.8%, for decreasing-rate is
38.7%/38.6%, and for the unchanging-rate is 36.4%/38.4%.
On the other hand, topics with a higher fraction of questions
having an accepted answer tend to have decreasing or
unchanging rate. For example, out of the top ten topics with
the highest % acpt, eight show decreasing or unchanging
trends.

Summary for RQ2:

Among the 27 question topics, the relative rate of ques-
tions for 11 topics increased, for eight topics decreased,
and for the remaining topics didn't change over time.
Questions for the 11 trending up topics are less likely
to receive an accepted answer than questions for the
remaining topics. The topics that have the largest in-
creases (as indicated by Sen's slope) areCode Error,
Training Anomaly, Model Load, and Model Conversion,
and the topic that decreases the most is Graph Session.
The topic that developers ask the most questions about,
Installation Error hasn't increased or decreased signi�-
cantly over time.

Fig. 7. Distribution of labeled README themes. RL stands for reinforce-
ment learning and ML stands for machine learning.

5 RQ3: HOW DO THESE PROBLEMS VARY OVER

APPLICATION TYPES ?
5.1 Methods

As discussed in Section 2.1.2, there are two challenges to
answer RQ3: identifying application types and relating SO
questions to application types. In the following, we elabo-
rate on how we tackle the two challenges.

5.1.1 Identifying Application Types
We identify DL application types by performing LDA on
README �les as described in Section 2.3, which results in
26 themes15 (i.e., application types) for 227k repositories.
However, four themes could not be labeled because the
associated README �les don't contain information on the
repository's functionality. For example, one such theme's
top nine words are instal python run environ requir packag
depend pip numpiand 30 randomly sampled READMEs from
this theme contain only environment information. We thus
can not infer what is the functionality of the software in
these repositories. The presence of these four functionality-
unrelated themes is consistent with Sharma et al.'s results
where 16 out of 49 themes could not be labeled according to
functionality [26].

The remaining 22 themes do have information re�ecting
the functionality of the underlying software and are shown
in Figure 7. Although we have removed READMEs of some
non-software development repositories depending on cer-
tain words as described in Section 2.2.2, some READMEs of
repositories that are irrelevant to software development re-
main in the sample as some keywords may refer to software
development or other activities. For example, “learning” can
be used to express “learning tutorial”, but also to express
“reinforcement learning”. As a result, we �nd two themes
that appear to be irrelevant to software development, i.e.,
Learning Tutorial including repositories with various code
examples, and Competitionincluding repositories for Kaggle
competitions. Most of the remaining 20 themes have self-
explanatory names with a few below that require more
explanations. Other theme includes repositories of DL in

15. To avoid confusion with SO question topics, we refer to LDA
topics obtained from the README corpus as “themes.”

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

other disciplines such as material design16. Development
Toolsand Data Utilities include various packages and scripts
to enhance DL frameworks and prepare data. ML models
repositories implement various simple ML algorithms such
as linear and logistic regressions. The remaining 16 themes,
representing 51.1% (116,362/227,756) repositories, include
speci�c DL methods like Transfer Learningand application
tasks like Image Recognition. We, therefore, focus our analysis
of application types on these 16 themes and investigate
the question topic distribution for these application types
represented by each of the 16 themes.

5.1.2 Relating SO Questions to Application Types

We apply the LDA model �tted on READMEs (LDA r) to
the 92,830 SO questions to relate SO questions to application
types. Speci�cally, LDA r infers the README theme proba-
bility distribution for each SO question, and we relate each
SO question to the README theme that has the highest
probability. Only 24,837 questions (27% of all 92,830 ques-
tions) could be related to the 16 application types, possibly
because DL-related questions on SO do not always contain
suf�cient descriptions of the application type context.

To validate the LDA inference performance of each
application type, for each application type, we randomly
select 20 SO questions related to it. Then the �rst two
authors manually check whether these questions are truly
related to the application type. After that, the two authors
compare their results and resolve the con�ict. We measure
the LDA inference performance for an application type with
the ratio of questions that are truly related to it in its 20
sampled questions. Overall, the LDA inference performance
is above 60% for all application types, with the minimum
of 65% (only for Sentiment Analysis), the maximum of 95%,
and the average of 81%. We �nd that application types
with more general words in their top nine words are more
likely to have relatively low LDA inference performance.
For example, only 65% (13 out of 20) questions are correctly
related to the application type, Sentiment Analysis, whose
top nine words are project analysi sentiment �nal cs notebook
report provid �le. In contrast, 95%(19 out of 20) questions are
correctly related to the application type, Object Detection,
whose top nine words are detect object face video recognit
imag project emot frame. It is not surprising to observe such
differences since LDA is based on word frequencies and
word co-occurrences and general words are more likely to
lead to grouping of unrelated questions.

To conclude, each of the 24,837 SO questions is related
to a question topic and an application type. For each appli-
cation type, we thus calculate the distribution of questions
related to it over question topics.

5.2 Results

Each column in Figure 8 shows the question topic distribu-
tion for an application type. The horizontal axis represents
application types and the vertical axis represents question
topics. The cell with the darkest color in each column
indicates the most common question topics (i.e., with the
highest ratio of questions) for that application type, which

16. https://github.com/DesignInformaticsLab/fracture network

Fig. 8. Question topic distribution for the 16 application types.The hori-
zontal axis represents application types and the vertical axis represents
question topics. Normalization is done column-wise. We also separate
question topics by stages with blue dashed line. PP, Mtr, ME, MTu, and
MP stand for Preliminary Preparation, Model Training, Model Evaluation,
Model Tuning, and Model Prediction respectively.

we call primary question topic. Overall, 12 application
types' primary question topics cover 10 unique single-stage
topics and the remaining application types' primary ques-
tion topics cover three multiple-stage topics. Below we use
bold and sans serif to distinguish between question topics
(in bold) and application types (in sans serif).

As we can observe from the distribution of primary
question topics, the primary question topics for each ap-
plication type are different. Four application types (Image
Segmentation, Medical Diagnose, Sentiment Analysis, and
Game AI) raise most common questions related to topic
Image Preprocessing, Data Load, and Game AI , which
relate to Data Preparationstage. These four application types
are pervasive in daily life with mature solutions. Speci�cally,
both Image Segmentation and Medical Diagnose applica-
tions concern most the question topic Image Preprocessing.
Image segmentation is “the process of assigning a label to
every pixel in an image such that pixels with the same
label share certain characteristics” [56]. Therefore, when
performing image segmentation, developers need to ensure
that pixel labels and images align. For example, a developer
encountered a problem with images and labels rotated at
different angles due to improper image preprocessing oper-
ations in Question 58846552. In this case, dedicated image
preprocessing packages that help automatically align pixel
labels and images could alleviate developers' problems with

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

preprocessing image segmentation datasets. For Medical
Diagnose applications, developers usually deal with med-
ical images to perform tasks like pneumonia detection and
tumor segmentation. Medical images often come from dif-
ferent proprietary systems and may need other knowledge
of the clinical data. Therefore, tools that process various
formats of medical images with clinical knowledge may be
bene�cial. Sentiment Analysis mostly concerns Data Load
questions suggesting a potential lack of standard ways or
lack of clear documentation on how to associate text corpus
with sentiment labels. For example, in Question 64986037,
a developer failed to use the code provided in the of�cial
tutorial to load a larger dataset. Therefore, DL frameworks
could provide more examples to show the complex use of
dataload-related APIs in their tutorials.

The application types (Transfer Learning, Time Series
Prediction, Text Generation, and Word Embedding) mostly
concern question topics of Model Load , LSTM , and Embed-
ding , relating to Model Setupstage. These four application
types concern emerging DL methods. Speci�cally, Model
Load is the primary question topic of Transfer Learning
with 35.7% questions. Transfer learning is an emerging
DL method that applies knowledge gained from solving
one problem to a different but related problem [57] and
is an effective way to speed up training and improve the
performance of DL models, especially when the training
data is limited [58]. As shown in Figure 7, transfer learning
is widely adopted by DL developers to train models with
4.9% (of 227,756) repositories. Our �nding suggests further
improvement on current support on loading pre-trained
models is necessary and urgent.Embedding is the primary
question topic of both Text Generation and Word Embedding
with 39.4% and 70.4% questions respectively. Embedding is
usually used to densely represent text data and is widely
used in many natural language processing tasks such as
text generation [59]. As embedding has become pervasive
and fundamental, many models are proposed to train better
embeddings such as BERT17. But our �nding indicates that
developers have problems understanding and implement-
ing these embedding models in practice.

Only one application type's primary question topic pri-
marily relates to Model Training stage, i.e., Image Style
Transfer whose primary question topic is Loss Function
with 36.3% questions. It is possibly due to Generative
Adversarial Networks (GAN), the method widely used
in this application type. GAN involves a contest between
two sub-models, a generator model for generating new
examples and a discriminator model for classifying whether
generated examples are real or fake. It generally needs to
combine two loss functions, one for generator and the other
for discriminator, which adds complexity in implementing
loss functions, e.g., how to assign weights to these two loss
functions using Keras(Question 54068352). Besides, achiev-
ing equilibrium between the generator and discriminator
also leads to dif�culties tuning GAN, illustrated by 16.6%
Training Anomaly questions. Training Anomaly , which
primarily relates to Model Tuning stage, is the primary
question topic of Image Recognition with 48.5% questions.
A possible explanation is that many novices to DL usu-

17. https://github.com/google-research/bert

ally get started from image recognition tasks such as the
well-known handwritten digit recognition task, resulting in
many questions about how to �x abnormal training results.
Therefore, summarizing common model tuning practices
may be helpful. Finally, Model conversion , which primarily
relates to Model Predictionstage, is the primary question
topic of Deployment APP with 58.6% questions, indicating
that converting trained models to the format supported
by the deployment environment is the biggest challenge
when deploying DL software. As shown in Figure 7, 4.0%
repositories concern this application type, suggesting the
popularity of deploying DL software and the urgency of
better support on model conversions.

The remaining four application types' primary question
topics cover three multiple-stage topics. Particularly, Object
Detection API is the primary question topic in questions
related to Object Detection with 78.2% questions. Object
detection is a computer vision task of detecting instances
of objects of a certain class within images or videos [60]. It is
more and more used in many cases such as Tesla's Autopilot
AI [61]. Many tools are proposed to help developers build
object detection models such as TensorFlow Object Detec-
tion API and are widely used by developers. But as revealed
in Section 4.2, developers sometimes suffer from using the
documentation.

Summary for RQ3:

There are 16 application types related to software de-
velopment in the 227k repositories. The distribution of
topics with the most questions vary with application
types, with half topics relating to the second and third
stages. Speci�cally, developers ask the most questions
about topics relating to Data Preparation(2nd) stage
for four mature application types such as Image Seg-
mentation, and ask the most questions about topics
relating to Model Setup(3rd) stage for four application
types concerning emerging methods such as Transfer
Learning.

6 IMPLICATIONS

Our results show how SE needs for DL vary across stages,
time, and application types. In the following, we discuss
implications for SE4DL research, practice, and education.
SE4DL Research & Practice. (i) Reduce the rate of prelimi-
nary preparation problems.DL frameworks do have complex
dependencies, which makes it dif�cult to install and build
them successfully, thus unable to proceed any further. De-
velopers ask the most questions about Installation Error and
this topic is stable over time. Besides, only 29.9%Installation
Error and 30.1% Build Error questions have an accepted
answer. Although docker technology allows developers to
package their code conveniently, it has several limitations.
On the one hand, as revealed by Haque et al. [18], docker
brings new challenges to developers. On the other hand,
current pre-built docker images provided by DL frame-
works usually contain complete functionalities and don't
support functionality customization. As evidenced by the
Build Error questions, developers sometimes need to cus-
tomize the functionalities of DL frameworks for various

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

reasons, e.g., reducing binary size [62] and adding custom
ops [63]. Therefore, many developers still choose to install
and build frameworks locally. Speci�cally, only 3.6% (36,140
out of 998,514) collected repositories contain ”Docker�le”.
One possible avenue for further research may be to perform
an in-depth analysis of the in�uence of docker on reducing
install and build errors. Moreover, frameworks like Keras
that act as interface of other DL frameworks may add ad-
ditional dif�culties to the installation. One possible solution
to alleviate such problems is to provide a dedicated page
like TensorFlow [64] and PyTorch [65] to collect common
install and build errors and corresponding solutions.

(ii) Improve the compatibility of DL Framework APIs.The
variety of data and data handling libraries such as Numpy,
Pandas, and Gym, make it often necessary for developers
to convert data types among third-party libraries and DL
frameworks. The relative rate of Data Typequestions doesn't
change over time, indicating that the data type compatibility
between DL frameworks and third-party libraries is an
ongoing and not completely addressed issue. At the same
time, Code Errorquestions are growing the fastest and their
burst of increases overlap with the major release time of
TensorFlow. This suggests that the backward compatibility
of DL frameworks may need to be improved to mitigate
the in�uence of breaking changes. Research on tools that
would automatically generate reports of how DL framework
APIs are used in practice could be used to generate better
test suites for the frameworks. Such tools could help DL
API maintainers better understand how frequently users use
their APIs, thus estimating the impact of introducing an API
change.

(iii) Provide better support of using pre-trained models.The
increasing rate of Model Loadand Model Conversionquestions
that dominate Transfer Learningand Deployment APPappli-
cations respectively suggests that better support of loading
and converting trained models to a form where they can
be used for prediction would be bene�cial. Model weights
tend to be saved as key-value pairs where the keys are layer
names and the values are layer weights. However, existing
support on loading models appears to be rudimentary. For
example, to load saved model weights in PyTorch, develop-
ers need to create an instance of the same model �rst, then
load pre-trained weights using load_state_dict method,
which is inconvenient and unnecessarily limits the �exibility
of loading weights. To make matters even more compli-
cated, the model formats supported by different frameworks
and deployment platforms are not easily convertible as
demonstrated by the rapidly increasing rate of Model Con-
versionquestions. Developers �nd it hard to get answers to
their questions as well, with only 25.7% Model Conversion
questions having an accepted answer.

(iv) Provide application-type speci�c tools.Our results
show that different topics dominate different application
types with sometimes not immediately obvious associa-
tions. Application-type speci�c tools might be able to better
satisfy developers' unique needs in some of these applica-
tions. For example, based on our �ndings, integrating image
preprocessing packages that automatically align images and
pixel labels for image segmentation applications might be
bene�cial.

(v) Design shape correction tools. Tensor Shapetopic ex-

hibits an increasing trend and has the highest % acpt.
Such questions are typically raised by developers who do
not completely understand the meaning of each dimension
of the neural network layer's input and output. For ex-
ample, developers are confused with the input shape of
torch.nn.Conv1d when applying it on text input (e.g.,
Question 62372938). Since some of the dimension errors
occur at the time of output, a massive amount of computa-
tional time may be spent before the error manifests itself. Al-
though existing DL frameworks could print model architec-
ture with each layer's output shape such as print(model)
in PyTorch and model.summary() in Keras, they don't
check whether the input shape satis�es the layer's require-
ment. Therefore, on the one hand, frameworks could pro-
vide meaningful information about the expected dimension
and the mismatch in error backtrace. On the other hand,
validation tools might be designed to examine whether the
model on developers' data induces shape errors and provide
suggestions to correct the errors by analyzing the data �ow
in the model. Though several works [66], [67] have designed
tools to detect shape errors for TensorFlow, similar tools for
Keras and PyTorch are lacking and could be designed.

(vi) Improve documentation.As shown in our results,
many developers have dif�culty understanding and using
DL framework APIs. For instance, API Usage, API Misuse,
and Object Detection APItopics account for 9.8% questions
in total, and API Misuse and Object Detection APItopics
both show an increasing trend. Hence, the DL framework
documentation should be improved. On the one hand,
comparisons between similar APIs and best practices of
using an API could be provided in the documentation
to guide developers ef�ciently use suitable APIs. On the
other hand, as discussed in Section 3.2 and Section 5.2,
developers sometimes fail to learn from of�cial tutorials
(e.g., Question 59290830, 64986037), suggesting that the use-
fulness [68] of relevant documentation should be improved.
For example, rather than using ready-to-use datasets, use
raw data to demonstrate the usage of data-related APIs.
In addition, as revealed in Section 4.2, TensorFlow Ob-
ject Detection API organizes documentation as multiple
markdown �les, which causes some �ndability issues (e.g.,
Question 49148962). Therefore, the usability [68] of Tensor-
Flow Object Detection API documentation could be im-
proved.
SE4DL Education. (i) Design teaching materials in a more
targeted way.The relationship between question topics and
SE4DL stages and application types may provide a checklist
for SE4DL educators to help them design more targeted
teaching materials and tailor the curriculum towards the
speci�c application type if the course concerns it. They may
consider ensuring that topics found answering RQ1 are
in their teaching materials. RQ2 reveals that the questions
for the 11 topics that are becoming more frequent had a
lower percentage of having an accepted answer. First, the
dif�culty of getting an answer may be due to the dif�culty
of providing full relevant information [47]: a task dif�cult
for newcomers to SO [69]. Therefore, educators may con-
sider providing targeted training materials on how to ask
questions on SO so that they are more likely to receive an
accepted answer. Sometimes it may be dif�cult to provide
relevant information even for experienced SO users for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

problems such as installation or mismatch of model formats.
Possibly a tool could be written that automatically collects
the necessary information so that it can be submitted with
the question. Finally, for some of the topics that developers
may not receive suf�cient training, more teaching efforts
may remedy that. Answers to RQ3 may be used to target
teaching materials for speci�c application type and focus on
primary pitfalls developers experience there. For example,
a SE4DL educator may emphasize how to preprocess image
data when teaching the medical diagnose domain.

7 L IMITATIONS

Internal Validity concerns the soundness and accuracy
of the methods used to perform our study. Speci�cally,
the manual procedure used to label question topics and
README themes may be subjective. To minimize this sub-
jectivity, two authors performed the labeling separately and
resolved inconsistencies through discussions. Moreover, a
third person has inspected the named question topics and
README themes. The Kappa value of labeling README
sections in Section 2.2.2 and SE4DL stages 3.1 measuring the
agreement between the two authors was both above 0.80,
which is considered to be almost perfect agreement [28],
suggesting high reliability of the procedure. The method
used to identify DL application types relied on considering
the text of �rst two sections of README �les. README
�les have been used to classify repositories previously [26],
[27]. We choose the �rst two sections to locate relevant
information from README �les based on the results of
a preliminary study that found that in over 80% of cases
of a random sample functionality-relevant information was
contained within the �rst two sections. For comparison,
we also ran LDA on the entire text of READMEs but the
results were far worse with the coherence score of 0.47.
The third limitation relates to the accuracy of the estimated
question ratios for SE4DL stages. The ratios were estimated
as described in 3.1. To assess the accuracy of the estimates,
we also manually labeled 383 randomly sampled questions.
Our �nding indicates that errors in the estimates are within
1%. The fourth limitation relates to the way how LDA
parameters were selected. To address it, we did parameter
tuning using Mallet's hyperparameter optimization for ~�
and ~� and also used an approach described in [26], [33],
[36], GA, to tune K and I . As is widely done in recent
research [6], [18], [19], we used coherence score to evaluate
how LDA �t. We also evaluate the LDA stability with widely
used metric — raw score R n . The process of using the LDA
model �tted on READMEs to make inferences on a different
corpus (SO questions) may introduce vocabulary incom-
patibility issues. To minimize the impact of these potential
issues we use--use-pipe-from option suggested in Mallet
documentation [70] to align tokens in SO questions with
README corpus's vocabulary and validate the inference
results as described in Section 5.1.

External Validity concerns the threats to generalize our
�ndings. Similar to previous studies [15], [17], [18], [19], [31],
[32], [33], [34], we use SO questions to identify practical
problems. As a result, we may ignore problems reported
in other platforms besides SO such as GitHub issues. As
discussed in a prior study [6], “GitHub provides more developer

perspectives, while Stack Over�ow provides more of a user's
perspective”. In this study, we aim to investigate problems
faced by developers when developing DL applications (i.e.,
user's perspective). Therefore, we study SO posts instead
of GitHub issues. Considering that developers who use SO
appear to vary in experience and background, and that
a search engine query often links to SO [71], we believe
that SO questions should approximate developers' practical
problems regarding which they are willing to attempt to
crowd-source an answer. We identify DL-related SO ques-
tions based on tags that are similar to tags used in previous
work [10]. We use tags representing the three most popular
DL frameworks (in terms of GitHub stars). We can not,
therefore, extrapolate our results to other frameworks. How-
ever, we carefully make a comparison between the three
frameworks under study and four other frameworks (i.e.,
Theano, Caffe, MxNet, and CNTK) which once attracted
attention from industry and academia in Appendix. Com-
pared with the other four frameworks, the three frame-
works selected for this study are actively developed, have
increasing downstream repositories and SO questions, and
cover different DL framework implementations. We also run
LDA on all SO questions related to the seven frameworks,
which identi�es the same 27 question topics. Therefore, we
believe the three selected frameworks are representative and
in�uential. Some of the questions that discuss the three
frameworks may not have the tags we used for �ltering.
To capture these untagged questions, future work may con-
sider applying content-based �ltering techniques as in [18].
We also identify DL-related repositories based on the three
popular DL frameworks. Some of the DL-related reposito-
ries may use other frameworks. The three frameworks we
choose are used in almost one million repositories, so we
believe our dataset represents a signi�cant part of all open
source DL development.

Construct Validity is the degree to which our metrics
of the relative number of questions and proportion of an-
swered questions measure the relative number of problems
and dif�culty of getting answers. For example, even a stable
relative rate for a topic represents increasing number of
questions. The question intensity or relative frequency may
also re�ect the changing or growing of the population of
developers. From our perspective, we wanted to demon-
strate the relative importance of a problem, so the exact
reason why certain stages, topics, or themes have more
questions is not essential. What matters is that if addressed
through improvement in the frameworks, better training,
or improved tools, it will bring bene�ts. The reasons why
some questions do not get answers may vary as well. For
example, a question may be harder, or be badly formulated,
or lack context, or be hard to specify the full context (as in
installation problems), or there simply may be no experts to
answer it. As with the number of questions, these reasons
may be important and may require different interventions.
For example, to train developers how to ask questions, how
to determine and provide relevant context, how to incen-
tivize experts who answer questions better, etc. From the
perspective of our research, however, unanswered questions
indicate unresolved problems and the lower the percentage
of accepted answers, the bigger that the problem is.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 4
Summary of related work on SE4DL stages

Paper Artifacts Findings about SE4DL Stages Findings about Trend

Alshangiti et
al. [15] SO questions

The data pre-processing and manipulationstage
and the model deployment and environment setup
stage are the most challenging.

N.A.

Islam et al.[16]
SO questions
and GitHub
commits

The stages with the most bugs are data prepara-
tion, model training, and model setup.

Structural logic bugs are increasing and data
bugs are decreasing.

Han et al.[6]
SO questions
and GitHub
issues

Model Training and Preliminary Preparationare
the most frequently discussed stages and Model
Tuning stage has not been discussed

The impact trend of stages on TensorFlow and
Theano are relatively �at and on PyTorch �uctu-
ates intensely; The top 3 LDA topics with largest
increases or decreases are always different on
the three studied DL frameworks.

8 RELATED WORK

SE4DL has unique problems that differ from problems
encountered in other domains of software development
and has attracted several empirical studies to characterize
SE4DL needs. Speci�cally, many studies focus on SE4DL
challenges and faults, but they do not investigate how
they vary among SE4DL stages. The study of Zhang et
al. [7] investigated DL software bugs. The authors manually
analyzed 175 TensorFlow program bugs collected from SO
and GitHub and summarized four symptoms such as Error
and Low Effectivenessand seven root causes such asIncorrect
Model Parameter or Structureand Unaligned Tensor. Islam
et al. [16] and Humbatova et al. [10] studied more DL
frameworks for a more comprehensive understanding of DL
software bug symptoms and root causes. Islam et al. also
analyzed �x patterns and challenges of these bugs in their
follow-up work [9]. Zhang et al. [11] studied the program
failures of DL jobs running on DL platforms and found that
near half of the failures occur in the interaction with the
platform rather than in the execution of code logic. Zhang
et al. [8] manually inspected 715 DL-related SO questions
and identi�ed seven kinds of questions such as program
crash, model migration and deployment, and implementation.
Other empirical studies of SE4DL focused on the model
deployment task at Model Predictionstage. Guo et al. [12]
investigated the performance gap when deploying trained
models to mobile devices and web browsers and found
that model deployment suffered from compatibility and
reliability issues. Chen et al. [13] manually analyzed 769
SO posts and built taxonomies consisting of 72 challenges
when deploying DL software to server/cloud, mobile, and
browser. They further analyzed the symptoms and �x strate-
gies of deployment faults of mobile DL apps [14].

Work in [6], [15], [16] investigated SE4DL stages. We
summarize the �ndings of these three papers in Table 4. The
Artifacts column shows the data source used. The third and
fourth columns show the �ndings concerning SE4DL stages
and problem trends. N.A. means no �ndings. Alshangiti et
al. [15] analyzed 684 machine learning (ML) related SO ques-
tions and revealed the stages with the highest percentage
of questions without an accepted answer. Islam et al. [16]
manually labeled 970 bugs collected from SO questions and
GitHub commits to stages and revealed stages with the
most bugs and the annual trend of bugs. Han et al. [6]
applied LDA on large-scale SO questions and GitHub issues

of three DL frameworks, namely, Tensor�ow, PyTorch, and
Theano respectively and derived total 75 topics in the six
corpora. The authors then aggregated LDA topics into 20
topic categories in all stages and reported the question topic
distribution over stages. They also reported the impact (the
averaged probability of a topic in the topic probability distri-
bution of all questions) trend of stages in the six corpora and
the impact trend of particular topics and topic categories.

In comparison to these three studies, our study has
made several advances. In particular, unlike our study, the
work described in [15], [16] was based on a much smaller
dataset and didn't associate problems with DL stages. The
work described in [6] investigated stages under an improper
assumption that the question topics exclusively belong to
a single stage. We found most topics to occur in most
stages. Furthermore, the authors only presented the trends
for only a few of the topics. Finally, none of the three studies
investigate how problems faced by developers vary over DL
application types.

In this study, we perform topic modeling with LDA on
large-scale SO questions and README �les to reveal the
varied and interconnected landscape of DL development
stages, developer needs, and DL application types, in partic-
ular, how problems faced by DL developers are distributed
over SE4DL stages and vary over time and application
types.

9 CONCLUSION

Software development of DL applications presents unique
problems, and is rapidly spreading and evolving. This paper
aims to better understand SE4DL needs by identifying how
the problems faced by DL developers vary over DL develop-
ment stages, time, and application types. Our approach is at-
tempting to leverage approximately all DL-related SO ques-
tions and public DL software projects. In total, we analyze
92,830 SO questions and 227,756 READMEs of repositories
related to DL. We also describe the process we used to obtain
the distribution of SO question topics to facilitate not only
reproduction of the results at a later time, but also to support
investigation in other software development domains. The
approach based on analyzing nearly all actual projects and
questions can help better prioritize the training, creation of
relevant tools and technologies, and further research efforts
in that domain. We �nd the distribution of topics to be
uneven over DL stages, time, and application types. Often

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

the most frequent topics for an application type or a stage
are not intuitive. We believe that our detailed description
of the changing landscape of SE4DL needs over DL stages,
time, and application types would help inform ways to
improve SE4DL.

ACKNOWLEDGMENTS

We would like to thank Zhehao Zhao for his valuable
feedback. We also sincerely thank the reviewers for their
great suggestions. This work is supported by the National
Key R&D Program of China Grant 2018YFB1004201 and
the National Natural Science Foundation of China Grant
61825201.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classi�cation with deep convolutional neural networks,” Commun.
ACM, vol. 60, no. 6, pp. 84–90, 2017. [Online]. Available:
http://doi.acm.org/10.1145/3065386

[2] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi,
“You only look once: Uni�ed, real-time object detection,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 779–788. [Online]. Available:
https://doi.org/10.1109/CVPR.2016.91

[3] “Tensor�ow,” https://www.tensor�ow.org/, retrieve on August
30, 2021.

[4] “Keras: the python deep learning api,” https://keras.io/, retrieve
on July 27, 2021.

[5] “Pytorch,” https://pytorch.org/, retrieve on August 30, 2021.
[6] J. Han, E. Shihab, Z. Wan, S. Deng, and X. Xia, “What do

programmers discuss about deep learning frameworks,” Empir.
Softw. Eng., vol. 25, no. 4, pp. 2694–2747, 2020. [Online]. Available:
https://doi.org/10.1007/s10664-020-09819-6

[7] Y. Zhang, Y. Chen, S. Cheung, Y. Xiong, and L. Zhang, “An
empirical study on tensor�ow program bugs,” in Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21,
2018, F. Tip and E. Bodden, Eds. ACM, 2018, pp. 129–140.
[Online]. Available: https://doi.org/10.1145/3213846.3213866

[8] T. Zhang, C. Gao, L. Ma, M. R. Lyu, and M. Kim, “An empirical
study of common challenges in developing deep learning
applications,” in 30th IEEE International Symposium on Software
Reliability Engineering, ISSRE 2019, Berlin, Germany, October 28-31,
2019, K. Wolter, I. Schieferdecker, B. Gallina, M. Cukier, R. Natella,
N. R. Ivaki, and N. Laranjeiro, Eds. IEEE, 2019, pp. 104–115.
[Online]. Available: https://doi.org/10.1109/ISSRE.2019.00020

[9] M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing
deep neural networks: �x patterns and challenges,” in ICSE
'20: 42nd International Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020, G. Rothermel and
D. Bae, Eds. ACM, 2020, pp. 1135–1146. [Online]. Available:
https://doi.org/10.1145/3377811.3380378

[10] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco,
and P. Tonella, “Taxonomy of real faults in deep learning
systems,” in ICSE '20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel
and D. Bae, Eds. ACM, 2020, pp. 1110–1121. [Online]. Available:
https://doi.org/10.1145/3377811.3380395

[11] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang,
“An empirical study on program failures of deep learning jobs,”
in ICSE '20: 42nd International Conference on Software Engineering,
Seoul, South Korea, 27 June - 19 July, 2020, G. Rothermel and
D. Bae, Eds. ACM, 2020, pp. 1159–1170. [Online]. Available:
https://doi.org/10.1145/3377811.3380362

[12] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu,
J. Zhao, and X. Li, “An empirical study towards characterizing
deep learning development and deployment across different
frameworks and platforms,” in 34th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2019, San
Diego, CA, USA, November 11-15, 2019. IEEE, 2019, pp. 810–822.
[Online]. Available: https://doi.org/10.1109/ASE.2019.00080

[13] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu,
“A comprehensive study on challenges in deploying deep
learning based software,” in ESEC/FSE '20: 28th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November
8-13, 2020, P. Devanbu, M. B. Cohen, and T. Zimmermann,
Eds. ACM, 2020, pp. 750–762. [Online]. Available: https:
//doi.org/10.1145/3368089.3409759

[14] Z. Chen, H. Yao, Y. Lou, Y. Cao, Y. Liu, H. Wang, and X. Liu,
“An empirical study on deployment faults of deep learning
based mobile applications,” in 43rd IEEE/ACM International
Conference on Software Engineering, ICSE 2021, Madrid, Spain,
22-30 May 2021. IEEE, 2021, pp. 674–685. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00068

[15] M. Alshangiti, H. Sapkota, P. K. Murukannaiah, X. Liu, and
Q. Yu, “Why is developing machine learning applications
challenging? A study on stack over�ow posts,” in 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement, ESEM 2019, Porto de Galinhas, Recife, Brazil,
September 19-20, 2019. IEEE, 2019, pp. 1–11. [Online]. Available:
https://doi.org/10.1109/ESEM.2019.8870187

[16] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A
comprehensive study on deep learning bug characteristics,”
in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel, and
A. Russo, Eds. ACM, 2019, pp. 510–520. [Online]. Available:
https://doi.org/10.1145/3338906.3338955

[17] M. Bagherzadeh and R. Khatchadourian, “Going big: a
large-scale study on what big data developers ask,” in
Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia,
August 26-30, 2019, M. Dumas, D. Pfahl, S. Apel, and
A. Russo, Eds. ACM, 2019, pp. 432–442. [Online]. Available:
https://doi.org/10.1145/3338906.3338939

[18] M. U. Haque, L. H. Iwaya, and M. A. Babar, “Challenges in
docker development: A large-scale study using stack over�ow,”
in ESEM '20: ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, Bari, Italy, October 5-7,
2020, M. T. Baldassarre, F. Lanubile, M. Kalinowski, and
F. Sarro, Eds. ACM, 2020, pp. 7:1–7:11. [Online]. Available:
https://doi.org/10.1145/3382494.3410693

[19] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and
E. Shihab, “Challenges in chatbot development: A study
of stack over�ow posts,” in MSR '20: 17th International
Conference on Mining Software Repositories, Seoul, Republic of
Korea, 29-30 June, 2020, S. Kim, G. Gousios, S. Nadi, and
J. Hejderup, Eds. ACM, 2020, pp. 174–185. [Online]. Available:
https://doi.org/10.1145/3379597.3387472

[20] “About keras: installation & compatibility,” https://keras.io/
about/#installation-amp-compatibility, retrieve on August 1,
2021.

[21] G. Gousios and D. Spinellis, “Ghtorrent: Github's data from a
�rehose,” in 2012 9th IEEE Working Conference on Mining Software
Repositories (MSR), 2012, pp. 12–21.

[22] L. Hong and B. D. Davison, “Empirical study of topic modeling
in twitter,” in Proceedings of the First Workshop on Social Media
Analytics, ser. SOMA '10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 80–88. [Online]. Available:
https://doi.org/10.1145/1964858.1964870

[23] “Git objects,” https://git-scm.com/book/en/v2/
Git-Internals-Git-Objects, retrieve on July 30, 2021.

[24] “Mallet/en.txt,” https://github.com/mimno/Mallet/blob/
master/stoplists/en.txt, retrieve on August 1, 2021.

[25] C. Tan, Y. Wang, and C. Lee, “The use of bigrams to enhance text
categorization,” Inf. Process. Manag., vol. 38, no. 4, pp. 529–546,
2002. [Online]. Available: https://doi.org/10.1016/S0306-4573(01)
00045-0

[26] A. Sharma, F. Thung, P. S. Kochhar, A. Sulistya, and
D. Lo, “Cataloging github repositories,” in Proceedings of
the 21st International Conference on Evaluation and Assessment
in Software Engineering, EASE 2017, Karlskrona, Sweden, June
15-16, 2017, E. Mendes, S. Counsell, and K. Petersen,
Eds. ACM, 2017, pp. 314–319. [Online]. Available: https:
//doi.org/10.1145/3084226.3084287

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

[27] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo,
“Categorizing the content of github README �les,” Empir. Softw.
Eng., vol. 24, no. 3, pp. 1296–1327, 2019. [Online]. Available:
https://doi.org/10.1007/s10664-018-9660-3

[28] J. L. Fleiss, “Measuring nominal scale agreement among many
raters.” Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[29] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán,
and D. E. Damian, “The promises and perils of mining github,” in
11th Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India, P. T. Devanbu,
S. Kim, and M. Pinzger, Eds. ACM, 2014, pp. 92–101. [Online].
Available: https://doi.org/10.1145/2597073.2597074

[30] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” in Advances in Neural Information Processing
Systems 14 [Neural Information Processing Systems: Natural
and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver,
British Columbia, Canada], T. G. Dietterich, S. Becker,
and Z. Ghahramani, Eds. MIT Press, 2001, pp. 601–608.
[Online]. Available: https://proceedings.neurips.cc/paper/2001/
hash/296472c9542ad4d4788d543508116cbc-Abstract.html

[31] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions
asked by web developers,” in 11th Working Conference on
Mining Software Repositories, MSR 2014, Proceedings, May 31 -
June 1, 2014, Hyderabad, India, P. T. Devanbu, S. Kim, and
M. Pinzger, Eds. ACM, 2014, pp. 112–121. [Online]. Available:
https://doi.org/10.1145/2597073.2597083

[32] C. Rosen and E. Shihab, “What are mobile developers asking
about? A large scale study using stack over�ow,” Empir. Softw.
Eng., vol. 21, no. 3, pp. 1192–1223, 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9379-3

[33] X. Yang, D. Lo, X. Xia, Z. Wan, and J. Sun, “What security
questions do developers ask? A large-scale study of stack over�ow
posts,” J. Comput. Sci. Technol., vol. 31, no. 5, pp. 910–924, 2016.
[Online]. Available: https://doi.org/10.1007/s11390-016-1672-0

[34] S. Ahmed and M. Bagherzadeh, “What do concurrency
developers ask about?: a large-scale study using stack over�ow,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM 2018, Oulu,
Finland, October 11-12, 2018, M. Oivo, D. M. Fern ández, and
A. Mockus, Eds. ACM, 2018, pp. 30:1–30:10. [Online]. Available:
https://doi.org/10.1145/3239235.3239524

[35] C. Treude and M. Wagner, “Predicting good con�gurations for
github and stack over�ow topic models,” in Proceedings of the
16th International Conference on Mining Software Repositories, MSR
2019, 26-27 May 2019, Montreal, Canada, M. D. Storey, B. Adams,
and S. Haiduc, Eds. IEEE / ACM, 2019, pp. 84–95. [Online].
Available: https://doi.org/10.1109/MSR.2019.00022

[36] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and
A. D. Lucia, “How to effectively use topic models for software
engineering tasks? an approach based on genetic algorithms,” in
35th International Conference on Software Engineering, ICSE '13, San
Francisco, CA, USA, May 18-26, 2013, D. Notkin, B. H. C. Cheng,
and K. Pohl, Eds. IEEE Computer Society, 2013, pp. 522–531.
[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606598

[37] A. Agrawal, W. Fu, and T. Menzies, “What is wrong with
topic modeling? and how to �x it using search-based software
engineering,” Inf. Softw. Technol., vol. 98, pp. 74–88, 2018. [Online].
Available: https://doi.org/10.1016/j.infsof.2018.02.005

[38] A. Panichella, “A systematic comparison of search-based
approaches for LDA hyperparameter tuning,” Inf. Softw.
Technol., vol. 130, p. 106411, 2021. [Online]. Available: https:
//doi.org/10.1016/j.infsof.2020.106411

[39] H. M. Wallach, D. M. Mimno, and A. McCallum, “Rethinking
LDA: why priors matter,” in Advances in Neural Information
Processing Systems 22: 23rd Annual Conference on Neural Information
Processing Systems 2009. Proceedings of a meeting held 7-10
December 2009, Vancouver, British Columbia, Canada, Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and
A. Culotta, Eds. Curran Associates, Inc., 2009, pp. 1973–1981.
[Online]. Available: https://proceedings.neurips.cc/paper/2009/
hash/0d0871f0806eae32d30983b62252da50-Abstract.html

[40] M. D. Hoffman, D. M. Blei, and F. R. Bach, “Online
learning for latent dirichlet allocation,” in Advances in Neural
Information Processing Systems 23: 24th Annual Conference on Neural
Information Processing Systems 2010. Proceedings of a meeting held
6-9 December 2010, Vancouver, British Columbia, Canada, J. D.
Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and

A. Culotta, Eds. Curran Associates, Inc., 2010, pp. 856–864.
[Online]. Available: https://proceedings.neurips.cc/paper/2010/
hash/71f6278d140af599e06ad9bf1ba03cb0-Abstract.html

[41] D. M. Mimno, H. M. Wallach, E. M. Talley, M. Leenders, and
A. McCallum, “Optimizing semantic coherence in topic models,”
in Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre
Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special
Interest Group of the ACL. ACL, 2011, pp. 262–272. [Online].
Available: https://aclanthology.org/D11-1024/

[42] M. Röder, A. Both, and A. Hinneburg, “Exploring the space
of topic coherence measures,” in Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining, WSDM
2015, Shanghai, China, February 2-6, 2015, X. Cheng, H. Li,
E. Gabrilovich, and J. Tang, Eds. ACM, 2015, pp. 399–408.
[Online]. Available: https://doi.org/10.1145/2684822.2685324

[43] Z. Wan, X. Xia, and A. E. Hassan, “What do programmers
discuss about blockchain? A case study on the use of
balanced LDA and the reference architecture of a domain
to capture online discussions about blockchain platforms
across stack exchange communities,” IEEE Trans. Software
Eng., vol. 47, no. 7, pp. 1331–1349, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2921343

[44] J. H. Gennari, P. Langley, and D. H. Fisher, “Models of incremental
concept formation,” Artif. Intell. , vol. 40, no. 1-3, pp. 11–61,
1989. [Online]. Available: https://doi.org/10.1016/0004-3702(89)
90046-5

[45] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.
[Online]. Available: http://www.jstor.org/stable/4615733

[46] Wikipedia contributors, “Supermajority — Wikipedia, the
free encyclopedia,” https://en.wikipedia.org/w/index.php?title=
Supermajority&oldid=1061442111, 2021, [Online; accessed 10-
January-2022].

[47] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider,
“Answering questions about unanswered questions of stack
over�ow,” in Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR '13, San Francisco, CA, USA, May
18-19, 2013, T. Zimmermann, M. D. Penta, and S. Kim, Eds.
IEEE Computer Society, 2013, pp. 97–100. [Online]. Available:
https://doi.org/10.1109/MSR.2013.6624015

[48] M. Hussain and I. Mahmud, “pymannkendall: a python package
for non parametric mann kendall family of trend tests.” Journal
of Open Source Software, vol. 4, no. 39, p. 1556, 7 2019. [Online].
Available: http://dx.doi.org/10.21105/joss.01556

[49] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. Ger-
man, and D. Poshyvanyk, “Machine learning-based detection of
open source license exceptions,” in 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering (ICSE), 2017, pp. 118–129.

[50] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza,
“Pattern-based mining of opinions in q amp;a websites,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), 2019, pp. 548–559.

[51] A. Danilova, A. Naiakshina, S. Horstmann, and M. Smith, “Do
you really code? designing and evaluating screening questions
for online surveys with programmers,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
537–548.

[52] J. Jiang, Q. Wu, J. Cao, X. Xia, and L. Zhang, “Recommending tags
for pull requests in github,” Information and Software Technology,
vol. 129, p. 106394, 2021. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950584920301580

[53] “Google developers blog: Announcing tensor�ow 1.0,” https://
developers.googleblog.com/2017/02/announcing-tensor�ow-10.
html, retrieve on August 3, 2021.

[54] “Tensor�ow 2.0 is now available!” https://blog.tensor�ow.org/
2019/09/tensor�ow-20-is-now-available.html, retrieve on July 27,
2021.

[55] Z. Zhang, H. Zhu, M. Wen, Y. Tao, Y. Liu, and Y. Xiong, “How
do python framework apis evolve? an exploratory study,” in 27th
IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2020, London, ON, Canada, February 18-21,
2020, K. Kontogiannis, F. Khomh, A. Chatzigeorgiou, M. Fokaefs,
and M. Zhou, Eds. IEEE, 2020, pp. 81–92. [Online]. Available:
https://doi.org/10.1109/SANER48275.2020.9054800

[56] “Image segmentation - wikipedia,” https://en.wikipedia.org/
wiki/Image segmentation, retrieve on August 30, 2021.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

[57] “Transfer learning - wikipedia,” https://en.wikipedia.org/wiki/
Transfer learning, retrieve on August 30, 2021.

[58] “A gentle introduction to transfer learning for
deep learning,” https://machinelearningmastery.com/
transfer-learning-for-deep-learning/, retrieve on August 30,
2021.

[59] “Word embedding - wikipedia,” https://en.wikipedia.org/wiki/
Word embedding, retrieve on September 29, 2021.

[60] “Object detection — papers with code,” https://paperswithcode.
com/task/object-detection, retrieve on August 30, 2021.

[61] “Artificial intelligence & autopilot — tesla,” https://www.tesla.
com/AI, retrieve on August 30, 2021.

[62] The TensorFlow teams, “Reduce tensorflow lite binary size,”
https://www.tensorflow.org/lite/guide/reduce binary size,
2021, [Online; accessed 18-January-2022].

[63] ——, “Build tensorflow lite for android,” https://www.
tensorflow.org/lite/guide/build android#build tensorflow
lite locally, 2021, [Online; accessed 18-January-2022].

[64] “Build and install error messages,” https://www.tensorflow.org/
install/errors, retrieve on August 3, 2021.

[65] The PyTorch teams, “Windows faq — pytorch master documen-
tation,” https://pytorch.org/docs/master/notes/windows.html#
installation, 2021, [Online; accessed 20-January-2022].

[66] S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and
Y. Smaragdakis, “Static Analysis of Shape in TensorFlow
Programs,” in 34th European Conference on Object-Oriented
Programming (ECOOP 2020), ser. Leibniz International Proceedings
in Informatics (LIPIcs), R. Hirschfeld and T. Pape, Eds., vol.
166. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2020, pp. 15:1–15:29. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/13172

[67] S. Verma and Z. Su, “Shapeflow: Dynamic shape interpreter for
tensorflow,” 2020.

[68] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez,
L. Moreno, G. Bavota, and M. Lanza, “Software documentation
issues unveiled,” in Proceedings of the 41st International Conference
on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, J. M. Atlee, T. Bultan, and J. Whittle,
Eds. IEEE / ACM, 2019, pp. 1199–1210. [Online]. Available:
https://doi.org/10.1109/ICSE.2019.00122

[69] D. Ford, K. Lustig, J. Banks, and C. Parnin, “”we don’t do
that here”: How collaborative editing with mentors improves
engagement in social q&a communities,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, CHI
2018, Montreal, QC, Canada, April 21-26, 2018, R. L. Mandryk,
M. Hancock, M. Perry, and A. L. Cox, Eds. ACM, 2018, p. 608.
[Online]. Available: https://doi.org/10.1145/3173574.3174182

[70] “Topic modeling,” http://mallet.cs.umass.edu/topics.php, re-
trieve on August 30, 2021.

[71] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable
code: an analysis of stack overflow code snippets,” in Proceedings
of the 13th International Conference on Mining Software Repositories,
MSR 2016, Austin, TX, USA, May 14-22, 2016, M. Kim, R. Robbes,
and C. Bird, Eds. ACM, 2016, pp. 391–402. [Online]. Available:
https://doi.org/10.1145/2901739.2901767

Kai Gao is a PhD candidate at the School of
Software and Microelectronics, Peking Univer-
sity. He received his B.S. degree from Peking
University in 2019. His research interests include
Mining Software Repositories and Open Source
Software Ecosystems. He can be contacted at
gaokai19@pku.edu.cn.

Zhixing Wang received his B.S. in Computer
Science from the University of Edinburgh. He
is currently pursuing a master’s degree at the
School of Information Science and Technology,
the University of Tokyo. His research interests
include Computational Models for Cognition,
Sense of Agency and Body Ownership. He can
be contacted at zhixing0@protonmail.com.

Audris Mockus received the BS degree in ap-
plied mathematics from the Moscow Institute of
Physics and Technology in 1988, the MS degree
in 1991, and the PhD degree in statistics from
Carnegie Mellon University in 1994. He is a Har-
lan Mills Chair Professor of Digital Archeology
in the Department of Electrical Engineering and
Computer Science, the University of Tennessee.
He also continues to work part-time at Avaya
Labs Research. Previously, he was in the Soft-
ware Production Research Department at Bell

Labs. He studies software developers’ culture and behavior through
the recovery, documentation, and analysis of digital remains. These
digital traces reflect projections of collective and individual activity. He
reconstructs the reality from these projections by designing data mining
methods to summarize and augment these digital traces, interactive
visualization techniques to inspect, present, and control the behavior
of teams and individuals, and statistical models and optimization tech-
niques to understand the nature of individual and collective behavior. He
is a member of IEEE and ACM. He can be reached at audris@utk.edu.

Minghui Zhou received the BS, MS, and PhD
degrees in computer science from National Uni-
versity of Defense Technology in 1995, 1999,
and 2002, respectively. She is a professor in the
School of Computer Science at Peking Univer-
sity. She is interested in software digital sociol-
ogy, i.e., understanding the relationships among
people, project culture, and software product
through mining the repositories of software
projects. She is a member of the ACM and IEEE.
She can be reached at zhmh@pku.edu.cn.

	Introduction
	Data Preparation
	Data Collection
	SO Data
	WoC Data

	Data Preprocessing
	SO Questions
	Repository READMEs

	Topic modeling
	Fitting LDA Models
	Labeling LDA Topics

	RQ1: How are problems faced by DL developers distributed over SE4DL stages?
	Methods
	Results

	RQ2: How do these problems vary over time?
	Methods
	Results

	RQ3: How do these problems vary over application types?
	Methods
	Identifying Application Types
	Relating SO Questions to Application Types

	Results

	Implications
	Limitations
	Related Work
	Conclusion
	References
	Biographies
	Kai Gao
	Zhixing Wang
	Audris Mockus
	Minghui Zhou

