
Modeling the Centrality of Developer Output with Software
Supply Chains

Audris Mockus∗

Peter C. Rigby2

audris@meta.com
pcr@meta.com

Meta Platforms, Inc.
Menlo Park, CA, USA

Rui Abreu
Parth Suresh3

ruiabreu@meta.com
parthsuresh@meta.com
Meta Platforms, Inc.
Menlo Park, CA, USA

Yifen Chen
Nachiappan Nagappan

yifenchen@meta.com
nnachi@meta.com
Meta Platforms, Inc.
Menlo Park, CA, USA

ABSTRACT

Raw developer output, as measured by the number of changes a

developer makes to the system, is simplistic and potentially mis-

leading measure of productivity as new developers tend to work on

peripheral and experienced developers on more central parts of the

system. In this work, we use Software Supply Chain (SSC) networks

and Katz centrality and PageRank on these networks to suggest

a more nuanced measure of developer productivity. Our SSC is

a network that represents the relationships between developers

and artifacts that make up a system. We combine author-to-file,

co-changing files, call hierarchies, and reporting structure into a

single SSC and calculate the centrality of each node. The measures

of centrality can be used to better understand variations in the im-

pact of developer output at Meta. We start by partially replicating

prior work and show that the raw number of developer commits

plateaus over a project-specific period. However, the centrality of

developer work grows for the entire period of study, but the growth

slows after one year. This implies that while raw output might

plateau, more experienced developers work on more central parts

of the system. Finally, we investigate the incremental contribution

of SSC attributes in modeling developer output. We find that local

attributes such as the number of reports and the specific project

do not explain much variation (𝑅2 = 5.8%). In contrast, adding

Katz centrality or PageRank produces a model with an 𝑅2 above

30%. SSCs and their centrality provide valuable insights into the

centrality and importance of a developer’s work.

CCS CONCEPTS

· Software and its engineering→ Software creation and man-

agement; Collaboration in software development.

KEYWORDS

Software supply chains, Developer productivity

∗Mockus is also a professor at the University of Tennessee, Knoxville, USA.
2Rigby is also a professor at Concordia University in Montreal, QC, Canada.
3This work was done while Suresh was at Meta

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3613873

ACM Reference Format:

AudrisMockus, Peter C. Rigby, Rui Abreu, Parth Suresh, Yifen Chen, andNachi-

appan Nagappan. 2023. Modeling the Centrality of Developer Output with

Software Supply Chains. In Proceedings of the 31st ACM Joint European Soft-

ware Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE ’23), December 3ś9, 2023, San Francisco, CA, USA.

ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3611643.3613873

1 INTRODUCTION

Improving and measuring software productivity is difficult and

many researchers and practitioners have simply measured output

as the number of pull requests, modification requests, or commits

a developer has produced. In this work, we hypothesize that the

work context can be partly characterized via structural proper-

ties of a network representing explicit and implicit relationships

among software artifacts and people. Software supply chains (SSCs)

represent the relationships between developers and artifacts in a

software project. For example, one common SSC is the network

of files that change together in a commit, with a node being a file

and edges between files in the same commit. Investigating how the

structural properties of SSCs explain the variations in developer

output has significant scientific and practical value. In this work,

we aim to a) construct software supply chains within a large and

diverse (in terms of programming languages, project size, and ap-

plication types) industry code base observed over a period of 10+

years; b) create and fit a set of models for developer output starting

with the attempts to replicate historical results and then by enhanc-

ing the model with factors derived from several kinds of software

supply chains; c) factor the Katz centrality and PageRank of nodes

in the SSC into the models to understand how the centrality of a

developer’s work impacts output.

Methodologically, we rely on version control, code review, and

human resources systems to reconstruct the complete history of

software supply chains for the entire code base within the com-

pany. We then model how the SSC properties affect the output

and proceed to operationalize and calculate developer output and

the SSC network-derived measures. These SSC network measures

are calculated for the trailing 12 months and are then used to pre-

dict developer output for the subsequent month using Generalized

Additive Models (an extension of multiple regression that accom-

modates modeling nonlinear relationships). The model, in addition

to providing the output growth curve, allows the quantification of

the relationships between these factors and developer output.

We provide evidence for the following research questions related

to the tenure of developers and the raw output, the centrality of

https://orcid.org/0000-0002-7987-7598
https://orcid.org/0000-0003-1137-4297
https://orcid.org/0000-0003-3734-3157
https://orcid.org/0000-0002-0087-8759
https://orcid.org/0009-0002-0761-5860
https://orcid.org/0000-0003-1358-4124
https://doi.org/10.1145/3611643.3613873
https://doi.org/10.1145/3611643.3613873

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Audris Mockus, Peter C. Rigby, Rui Abreu, Parth Suresh, Yifen Chen, and Nachiappan Nagappan

the output, and a combined model that considers organizational

and reporting structure.

RQ1. Output vs. Tenure: How quickly do new developers

become productive in terms of number of commits?

Onboarding onto a new team requires substantial time and ef-

fort [20, 37]. Zhou and Mockus [45] modeled how long it took

developers to become productive in terms of the number of com-

mits. They found that the number of commits a developer writes

plateaus at one year. We replicate this work by modeling how the

commit count, CC, per developer increases with tenure.

Result: At Meta, we find that the developers’ rate of output either

plateaus or continues to grow at a slower pace depending on the

project.

RQ2. Output Centrality: Does the centrality of a devel-

oper’s work plateau over time?

Prior work used a simple local measure of degree centrality: the

number of developers who touched a file, with more developers

indicating a more central file [45]. We, instead, use the entire SSC

and global measures of centrality (Katz centrality and PageRank)

that take into account not just the neighboring nodes but their

importance as well.

Result: Prior work concluded that the centrality of the work

continues to grow at a linear rate for the entire study period of

three years [45]. Intuitively, it is unreasonable for work to grow

linearly forever. We find that the SSC-derived centrality measure

of the developer’s output continues to grow for at least three years,

but the growth starts decelerating after approximately one year.

RQ3. Full Model: What is the relative contribution of the

SCC measures in explaining the number of commits?

Wewant to understandwhich aspects of the SCC help explain the

variations in individual developer output. In this research question,

we progressively add SSC measures to model CC.

Result: The basic measures, including tenure, project, and number

of reports, have low predictive power of the developer’s output,

𝑅2 = 5.8%. In contrast, factoring either measure of centrality into

the model produces a 𝑅2 above 30%.

The remainder of this paper starts with related work in Section 2

and the development process at Meta in Section 3. In our methodol-

ogy and background, Section 4, we describe key network concepts

such as communities and network centrality and how they may be

used to differentiate parts of the system. We also discuss output

measures, measure operationalization, and statistical modelling

methodology. We answer our research question in Section 5. Our

findings are discussed in Section 6, limitations in Section 7, and

conclusions in Section 8.

2 RELATED WORK

The problem of measuring developer productivity is different from

better studied problems of software cost [8] and effort estima-

tion [30]. In the former case, models are used to associate properties

of the product with the cost (or effort needed) to build it. For ex-

ample, perhaps the best known COCOMO [8, 9] model relates the

logarithm of cost to the size of the software and other factors. The

productivity in software projects is distinct from the performance

on programming assignments as the developers are not faced with

clearly defined programming tasks but need to perform mainte-

nance and enhancement activities including learning about the

system and coordinating their work with others’ [11].

Developer productivity, on the other hand, concerns the value of

developer output relative to effort needed to produce that output. In

software industries where developers work full time, many studies

assume that overall developer effort is roughly proportional to

calendar time (with exceptions for vacations or training) [4, 5, 15]

and suggest models that, based on different properties of the tasks

developers concurrently work on, tease out the relative contribution

of these properties on the effort needed to accomplish the task. In

this paper, we make a similar assumption that the developers spend

similar amount of effort per sufficiently large unit of time.

While there is no single measure of productivity, prior works

have seen that developers become more proficient and start engag-

ing with more complex or difficult tasks with practice and that this

increase should be most clearly seen in newcomers of large and

complex software projects. Studies of learning in software devel-

opment show that the learning trajectories over time vary among

different types of tasks [6], most tasks take less time to accom-

plish with practice [36], and practice makes the difference between

traditional mastery (accuracy) and true mastery [7] (i.e. fluency,

accuracy + speed). The Legitimate Peripheral Participation (LPP)

approach argues that the learners’ participation of practice is at

first legitimately peripheral but increases gradually in engagement

and complexity [23] or, in other words, people engage in different

(often more complex) tasks as they learn. LPP was applied by [44]

to explain the change of roles in Open Source Software (OSS) devel-

opment. Von Krogh et al. [42] looked at the strategies and processes

by which newcomers join the existing OSS community, and how

they progressed to the stage of contributing code. Furthermore,

Mockus [27] found that a highly experienced developer may need

up to six new replacement developers in large software projects.

One goal of this work is to use Meta’s data to understand the impact

of centrality on the output of developers.

We go beyond the centrality of the nodes and also obtain the

SSC structure by leveraging community detection [18, 19]. Prior

works have used the changes made to the same function block

and committer-author relationship to link authors. The principal

difference with our approach is that we are not just constructing the

author network but the entire SSC that also includes files, utilizes

call graph, include graph, and co-changes (see Section 4.1).

We frame our study partly as a replication study on the multi-

dimensional framework of how developers acquire expertise [45].

That work separated multiple dimensions of developer expertise,

proposed ways to measure them, and quantified the learning curves

that describe how each type of expertise is acquired. Specifically,

they observed that the nature and complexity of development tasks

differ greatly between novices and experts, that these differences

involve the difficulty and importance of the tasks. The replicated

work uses the term centrality not in the network sense, but as an

indication of the impact of the task. More central developers tend

to engage in more impactful tasks that tend to modify more critical

areas of the code. Such task centrality thus can be transferred to

developers and code. In [45], they defined four dimensions: the

importance of a task based on its long-term impact (e.g., adopt-

ing a new framework), its potential to directly affect a customer,

Modeling the Centrality of Developer Output with Software Supply Chains ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

a product, or the development team. Since we extensively use the

word centrality as a precisely defined network property, we try

to replace the term łtask centralityž with task łimpact.ž We then

argue that network centrality appears to approximate at least some

aspects of the less formally defined task impact. They measured

the number of modification requests (MRs) completed each month

and found that it plateaued after 6 to 12 depending on the project

size [45]. Furthermore, they measured developer centrality growth

over developer tenure and found it to linearly increase over the

observed three-year interval. In our work, we first replicate these

core quantitative findings and then argue that certain network mea-

sures of SSCs appear to be better suited to measure łtask impact"

or centrality than previously proposed measures.

3 SOFTWARE DEVELOPMENT PROCESS AT
META

Meta like other companies runs software on their own servers and

does not install it at customer locations. This enables rapid updates

to the software and allows fine-grained control over versions and

configurations. At Meta, this deployment has led to a practice of

daily and weekly łpushž of new code to production. Before being

pushed, code is subject to peer review, internal use, and extensive

automated testing. After the code push, engineers carefully monitor

the apps’ behavior to identify any signs of trouble.

Similar to Open Source Software (OSS), at Meta, the developers

are also users, so they have first-hand knowledge of what the system

does and what services it provides. Engineers continuously develop

new features and make them available to users because of the need

to constantly evolve to satisfy not only changing user needs but also

competition from other companies. As in many other companies,

Meta’s new code is deployed as a series of small changes as soon

as they are ready. Since most of the functionality is on the server

side, deploying new software to the servers immediately makes it

available to all users, without any need for downloads and local

installation. The ability to deploy code quickly in small increments

behind guards and feature toggles enables rapid innovation [34].

At Meta, every line of code that is written is reviewed by another

engineer. This serves multiple purposes: the original engineer is

motivated to ensure that the code is of high quality, the reviewer

comes with a fresh mind and might find defects or suggest alterna-

tives, and, in general, knowledge about coding practices and the

code itself spreads throughout the company. Phabricator 1 is the

backbone of Meta ’s Continuous Integration system and is used for

modern code review, through which developers submit changes

(commits) and comment on each others’ commits, before they ulti-

mately become accepted into the code base or are discarded.

In addition to developer and release engineer code and regression

tests, Meta employees effectively test the latest code while using

it internally. This exercises the code under realistic conditions,

and employees can report any defects they encounter. A helpful

property of having employees double as testers is that as the number

of code changes grows with the company, the number of testers

follows suit automatically.

Phabricator and the version control systems are also used to

measure the development process where both events associated

1http://phabricator.org

with the code change and developer and reviewer actions and the

current state of all commits are recorded. When developers submit

their code for review, they make a commit (create a version of the

code) representing the initial version of the commit. If reviewers no-

tice any issues or suggest improvements, they may make additional

revisions until the commit is either approved and is incorporated

into the code base łis landed,ž or it may be abandoned. We do not

consider abandoned commits in our analysis. Each commit has an

author create date, a list of files modified, as well as some statistics:

non-empty lines changed.

Static analysis tools are widely deployed at Meta; we use Glean2

databases for C/C++ code and for Hack3 to measure dependen-

cies between files. We combine these datasources to understand

centrality and developer output.

4 METHODOLOGY AND BACKGROUND

In this section, we describe key concepts and methods used, starting

from the definition of SSCs, basic graph measures, measures of

developer output, and operationalizations we used in the study.

4.1 Background on Software supply chains

Contemporary software development rarely creates all the func-

tionality from scratch as was the case half a century ago. First, a

massive number of platforms, development tools, programming

languages, frameworks, and packages have been created and are

ready to be reused via package managers. We refer to such reuse

as the technical dependency software supply chain. An example

is łfile A uses a function implemented in file Bž or łfile A imports

package B.ž In some scenarios, instead of introducing a dependency,

developers choose to copy the code. We refer to copy-based reuse

as the second type of software supply chain. The third type of soft-

ware supply chain is the exchange of information when developers

create or modify the source code. We refer to it as knowledge-based

SSC, and it is the most fundamental type for our study of developer

output.

All three types of SSCs can be detected empirically using version

control systems, code review support systems, and source code

analysis tools. The interconnectedness of software and software

development can be revealed by reconstructing and measuring

these supply chains. As described in detail below, suitable types

of network analysis reveal communities of developers, modules of

source code, parts of the code forming infrastructure, key develop-

ers responsible for various areas of the code, knowledge transfer

or loss, and other aspects of the software supply network. Project

and reporting structure also provides additional information about

the structure of the projects and products in the organizations such

as Meta, where the codebase for many products is colocated in the

same repository.

4.2 Basic network measures of SSCs

Since SSCs are networks, we use techniques borrowed from net-

work analysis to characterize the impact of the nodes (developers

2Glean is an open-source system for working with facts about source code. Available
at https://glean.software/
3Hack is a programming language for the HipHop Virtual Machine (HHVM) and is a
dialect of PHP.

http://phabricator.org
https://glean.software/

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Audris Mockus, Peter C. Rigby, Rui Abreu, Parth Suresh, Yifen Chen, and Nachiappan Nagappan

Figure 1: Example of Katz Centrality and PageRank [2]. The lighter the color the more central and important the node is.

PageRank down-weights nodes with many out edges. Katz centrality does not require directions on edges which is an advantage

for SSC because the direction is not always obvious, e.g., when a developer changes a file which direction should the edge go?

and files) and detect communities in the megarepository housing

all Meta ’s code. From this repository we selected data related to

Projects A and B that represent social networking software and for

Project C the provides software for infrastructure used at multiple

projects. The primary way to discriminate among nodes in a net-

work is by measuring its centrality. The simplest network centrality

measure is degree centrality. It counts the number of edges that start

or terminate in a node. The main issue with the measure is that it

does not take into account the importance of the nodes these edges

lead to. Katz centrality [22] introduces two positive constants 𝛼 and

𝛽 to take into account not just the number of other nodes (degree

centrality), but also the importance of these nodes, while addressing

the problem of eigenvector centrality (where the node centrality

is simply the corresponding component of the eigenvector com-

puted for the largest eigenvalue of the adjacency matrix) with zero

in-degree nodes: 𝑥𝑖 = 𝛼
∑

𝑗 𝐴𝑖 𝑗𝑥 𝑗 + 𝛽 , where 𝐴𝑖 𝑗 is an element of

the adjacency matrix. 𝛽 gives a free centrality contribution for all

nodes, even though they do not receive any contribution from other

nodes. 𝛼 determines the balances between the contribution from

other nodes and the free constant.

PageRank [31] tries to down-weight nodes with many out-links

(e.g., a spam page that has millions of links). Some files may be

changedwith a lot of other files, such as release notes, other changes

might be bot-generated and so forth. PageRank reduces the impact

of such outliers on the calculation of centrality and is particularly

suited to detect infrastructural parts of the system, i.e. parts on

which the remainder of the system relies on. In PageRank, the

contribution value of a node is divided by out-degree of the node:

𝑥𝑖 = 𝛼
∑

𝑗 𝐴𝑖 𝑗𝑥 𝑗𝑘
𝑜
𝑗 + 𝛽 , where 𝑘

𝑜
𝑗 = 1 for zero out-degree nodes to

avoid division by zero.

In Figure 1 the node at the top right only references a very

important node, and it becomes much more important compared

to the Katz centrality (left graph); on the other hand, the node in

the center, which gets contributions from high out-degree nodes,

loses its importance. One drawback of PageRank is that it needs a

directed graph, and results vary if the direction is changed. Since

SSCs are bi-graphs and co-changes (see below) are multi-graphs,

it is not always obvious how to pick a direction for a link. Katz

centrality helps in such cases, as it works for undirected graphs.

In addition to the characterization of each node, we expect to find

a structure in the SSCs. Specifically, we are looking for a community

structure that connects developers and files for the project, product,

or a module they happen to work on. Since developers may move

among projects and the same code may be used by many projects

or products, one needs to detect communities empirically when

projects are not clearly delineated.

A commonly used approach that maximizes modularity is the

Louvain algorithm [1], which iteratively optimizes local commu-

nities until global modularity can no longer be improved given

perturbations to the current community state. Modularity is mea-

sured as the difference between the actual number of edges in a

community and the expected number of edges in the community.

Louvain method has extremely fast and highly scalable implemen-

tations that work well for the networks of hundreds of millions of

nodes [32]. Louvain method has a 𝛾 parameter with 𝛾 = 0 always

leading to a single community, and 𝛾 = 2 leading to all nodes being

singleton communities). We used the default value of 𝛾 = 1 in the

networkit 𝐶 + + function PLM [40, 41].

From our perspective determining the łcorrectž number of com-

munities is not important: we simply need to subdivide the massive

network of files and developers into distinct communities, so there

was no need or criteria by which to choose some other value of

𝛾 . We calculate centrality (and communities) using the complete

network of developers and files in order to ensure the technical

structure transfers to and is affected by the social structure. For

example, many files depend on a specific file F. Any developer who

modifies F inherits some of that centrality by being linked to the

central node.

4.3 Constructing SSCs at Meta

The raw data for constructing SSCs can be obtained from any ver-

sion control system by collecting information about code changes.

Specifically, each transaction or commit, modifies a set of files, spe-

cific lines, and is authored by a developer. It typically has one or

Modeling the Centrality of Developer Output with Software Supply Chains ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

more dates associated with it, as well as a pointer to the parent trans-

action(s)/commit(s). Each commit thus represents a link between

the author and the files they have created or modified. According to

our definition, these links represent edges in the knowledge-based

software supply chain. Since there are often multiple files in a single

commit, there are relationships among files, and we refer to these

as co-changed file-to-file relationships.

There are other file-to-file relationships; specifically, we con-

struct a file include network (for 𝐶/𝐶 + +) obtained from Glean

where the nodes are files and edges indicate that a file includes

another file. We also obtain file of function call to file of function

definition for the Hack programming language to operationalize

technical dependency SSCs.

In summary, for any interval of time and for each developer, we

can measure their output via the following three quantities: com-

mits and lines authored by a developer. We also have time-stamped

links among the source code files based on co-change and from files

to authors. For the technical dependency SSCs, however, we use

the latest version of the codebase as computing call hierarchies for

the entire code base for each month would be too computationally

expensive.

Similar measurements could be done in most software develop-

ment organizations hence the approach we propose is not unique

to Meta. What is perhaps not as common is the fact that in most

organizations such data would be kept in project-specific (and of-

ten numerous) version control and code review systems, while at

Meta most projects use the same system (Phabricator) and a single

Mercurial megarepository.

In addition to version control data, we also collect team member-

ship data as it is likely to have an effect on developer productivity.

This data resides in separate human resource databases and needs

to be extracted, processed, and linked with the software develop-

ment data described above. Typically, such systems record the latest

state of things, such as the current management hierarchy and team

membership. Fortunately, HR information at Meta maintains prior

states and we can determine transitions between teams and changes

of managers enabling the reconstruction of the management and

project hierarchy at any time in the past. We use it to reconstruct

these hierarchies at the time of each commit.

4.4 Learning Curve and Developer Output

While it has been known since the early days of software engi-

neering that developer output varies by more than one order of

magnitude [12, 13], it was not clear what part could be attributed to

experience and what part was personal. Here we focus on context

factors, such as developer’s past experience at Meta and on the

properties of the SSCs to model developer’s output. As in other

organizations, developers’ experience should play a role, hence

we suspect that developers’ output increases with the length of

tenure [45]. SSC network structure and their position within the

network may also matter. Developers’ membership in different

projects and reporting to different managers likely affect output

since each project may have its own type of product, application, or

other specialization that makes developers’ output more uniform

within that community than across communities. We first discuss

the learning curve and then consider aspects related to SSCs.

A learning curve has been investigated extensively in the past

for various kinds of tasks and, most recently, to model developer

output as it grows with tenure [45]. A specific parametric form

of the learning curve was proposed by Ritter and Schooler[35]:

𝑇 = 𝐶 · Trials−𝐶task , where 𝑇 is the time it takes to perform a task,

Trials is the number of times a person has performed that task,

C is a constant, and 𝐶𝑡𝑎𝑠𝑘 is a task-specific constant. The shape

of the curve shows how performing more trials through practice

leads to reduced performance time. In our study, we borrow this

basic idea of learners getting faster through practice. Following [45],

however, we use the number of tasks (represented by the number

of commits in this study) performed per unit of time as the measure

of developer performance, i.e., output per unit of time.

The learning curve tends not to be linear as exemplified by the

equation above. To estimate the developer learning curve, we fit a

generalized additive model (GAM) [16] implemented by Wood [43]

in R [33]. GAM is a variation of the linear regression: 𝑦 = 𝐶 +

𝑓1 (𝑥1) + . . . + 𝑓𝑚 (𝑥𝑚) + 𝑒𝑟𝑟𝑜𝑟 , where 𝑓𝑖 , 𝑖 = 1, . . . ,𝑚 are typically

smoothing functions such as splines.

4.4.1 Commit per Developer Month. Our primary focus is to ex-

plain the variation in the output produced by a developer each

month. While the developer output could be measured variously

(e.g., lines of code, commits, and files modified), we use commits

per month. In short, these are development tasks created by actual

developers (not automation) that were reviewed and merged into

the project. This definition excludes, for example, experimentation

or other modifications that do not propagate to the project code-

base. We refer to the output measures as CC (The Commit Count

per Developer Month) and denote it as 𝑂 (𝑑,𝑚) where 𝑑 denotes

the developer and𝑚 the month. In other literature, commits may

be referred to as Modification Requests (MRs) and in Open Source

Software a merged Pull Request (PR) represents a concept similar to

commit. Notably, CC is highly correlated to other output measures

such as the number of lines changed and files touched.

Our key goal is to explain CC by modeling it using predictors

quantifying developer properties such as tenure, their position

within the organization, and the code they work on. To model CC,

we first log-transform it for two primary reasons. First, we expect

the predictors of CC to contribute in a multiplicative fashion as

has been the convention of most effort models, e.g., COCOMO [8].

In simple terms it means that a developer with a 10% higher skill

will produce 10% more commits as opposed to a fixed number of

additional commits. The second reason is that the distribution of

commits is highly skewed (the mean is much higher than the me-

dian) and not suitable for common statistical models that typically

assume a more symmetric distribution; see, e.g., [25, 26, 28, 29].

4.5 Operationalizing SSCs and Measures

We take a holistic approach to include networks from developers,

source code files, and reporting hierarchy to operationalize our

software supply chain (SSC). Once we construct SSCs we then

calculate the predictors of the CC based on the entire SSC. This

approach is necessary because the local properties of the nodes

may not be sufficient to fully characterize their impact on CC. For

example, the importance of some files may be quantified only by

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Audris Mockus, Peter C. Rigby, Rui Abreu, Parth Suresh, Yifen Chen, and Nachiappan Nagappan

detecting that such files are modified only by the most experienced

developers.

Our SSC consists of nodes and edges. The nodes are individuals

(developers and managers), teams (groups of developers), commits

(files modified in a single transaction as recorded by the version

control system), and files. At any specific time, developers and man-

agers are connected in a reporting hierarchy, while each developer

belongs to one team. A commit is authored by a developer and

modifies a set of files, providing an edge between a developer and

the files they modify. A file may depend on another file (e.g., via

C-language #include statement). Finally, a commit has edges to each

commit used to implement it. We also use community detection

algorithms to assign each node of the SSC to a community based

on the edges listed above. These calculated community nodes have

edges to each member of the community. In total, we have six types

of nodes (developers, managers, teams, commits,files, and commu-

nities) and eight types of edges (reporting, authoring, part-of-team,

part-of-commit, file-file, part-of-community) in our SSC. We denote

edges via letter 𝐸, so that, for example, an edge 𝐸𝑟𝑒𝑝𝑜𝑟𝑡𝑠 (𝑎, 𝑏,𝑚)

indicates that the person 𝑎 reports to person 𝑏 during the month𝑚.

It is important to note that most edges have a timestamp associated

with them. To avoid data leakage, we construct SSC only on the data

predating the month𝑚 for which we calculate developer output

𝑂 (𝑑,𝑚)

Below we present the calculation and the theoretical justification

for each explanatory variable. The precise operationalizations are

also given in Table 1.

Has reports: 𝑅(𝑑,𝑚). As some of the developers start with man-

agement duties, their coding output should decrease as they become

more involved in management and mentoring activities. We use

an indicator variable which is 1 if the developer has anyone re-

porting to them. Supervising and mentoring should take some of

the time that could have been devoted to coding, thus reducing

their coding output. We calculate this by observing if the developer

𝑑 had any outgoing reporting edges prior to month 𝑚. In short,

𝑅(𝑑,𝑚) = |{𝑑1 : ∃𝑀 < 𝑚 : 𝐸𝑟𝑒𝑝𝑜𝑟𝑡𝑠 (𝑑, 𝑑1, 𝑀)}| > 0.

Prior Teams |𝑇𝑚 | and Prior Managers |𝑀𝑔|. We calculate the num-

ber of prior teams and managers a developer has had. This roughly

approximates how often the reporting structure for a developer

has changed. This also approximates the breadth of experience a

developer has had.

Community size. |𝐶 (𝑑) |.At Meta developers can freely access

any part of the codebase. The codebase contains code for a diverse

set of products and projects. Each one may use distinct practices,

tools, and programming languages, resulting in potentially differ-

ent counts for the same value of the output. We use community

detection in the constructed SSC to empirically identify strongly

connected groups of nodes using the Louvain algorithm [32]. The

size of each community may serve as a numerical predictor of co-

ordination needs. We expect that larger communities will lead to

lower productivity as the coordination needs for the corresponding

projects are likely to be higher.

Task importance. Katz centrality (𝐾), PageRank (𝑃). In most soft-

ware projects, newcomers are not assigned the most important

tasks, such as modifying parts of the system that are very complex,

may affect many other parts of the system, may cause downtime,

or may require major long-term changes in the ways the system is

maintained. Prior work found that the importance of tasks showed

continued growth throughtout the considered period of more than

three years [45]. As discussed in the section describing graph prop-

erties, PageRank is optimal for pointing out the infrastructural

parts of the system that are not frequently changed or not changed

by many developers. We suspect that these parts are more com-

plex and probably riskier to change. Katz centrality would be low

for such inactive łroots,ž even if everything else depends on them.

Complex parts of the code frequently modified by many develop-

ers, co-changing with many other files, and depending on or using

many other components would have high Katz centrality.

Table 1 lists the exact operationalizations of response and ex-

planatory variables. 𝑔(𝑟𝑎𝑛𝑔𝑒) stands for the graph constructed dur-

ing the period 𝑟𝑎𝑛𝑔𝑒 (or the entire history if not specified),𝑚 rep-

resents the month for which the variables are calculated and 𝑑

indicates the developer. We note that the centrality is calculated

over the trailing 12 months and does not include data for the current

month. Community is calculated over the entire date range to make

sure it does not vary month-to-month. 𝐿𝑜𝑢𝑣𝑎𝑖𝑛(𝑔) (𝑑) indicates the

community obtained from graph 𝑔 for developer 𝑑 while the project

is determined by the largest number of commits a developer did

during the month.

5 RESULTS

In the following section we discuss our findings, as we address

three fundamental research questions through their dedicated sub-

sections.

5.1 RQ1. Output vs Tenure: How quickly do new
developers become productive in terms of
number of commits?

A major conclusion from [45] is that łDevelopers’ productivity

plateaus within 6-7 months in small and medium projects and it

takes up to 12 months in large projects.ž As discussed earlier, they

measured developer output in the number of commits or MRs a

developer produced. To answer this question in the context of Meta,

we create a simple model where the response variable is developer

output and the only explanatory variable is the developer’s tenure.

To represent our models, we use the R language notation and use a

GAM model as discussed in Section 4.4. For example, the formula

𝑦 ∼ 𝑎 + 𝑏 ∗ 𝑐 means that łthe response y is modeled by explanatory

variables a, b, c and the interaction between b and c." Our model of

output and tenure in R notation is: 𝑂𝑑 (𝑑,𝑚) ∼ 𝑇 (𝑑,𝑚)

At Meta we have similar findings to [45] shown in Figure 2. The

simplest model relating tenure to the volume of changes appears to

show a rapid increase in the rate followed by a plateau for Project

A. Project B and the combination of smaller projects, Project C,

show a gradual but slowing growth for up to two years. The results

suggest that the findings in [45] could be replicated with respect to

the rate of developer output growth as developers become familiar

with the codebase over time. We also see a variation among projects

where Project A shows a plateau that appears to start sooner, while

other projects still exhibit some growth at the end of the observed

period. The apparently pulsating growth rate in the category łother

Modeling the Centrality of Developer Output with Software Supply Chains ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

Table 1: Descriptive statistics for the explanatory variables.

Name Measure Operationalization

Tenure in years 𝑇 (𝑑,𝑚) 𝑚 − 𝑗𝑜𝑖𝑛(𝑑)

Has Reports 𝑅(𝑑,𝑚) |𝑑1 : ∃𝑀 < 𝑚 : 𝐸 (𝑑,𝑑1, 𝑀) | > 0

Prior Teams |𝑇𝑚 | 𝑇𝑚 = |𝑡𝑒𝑎𝑚 : 𝑀 < 𝑚, 𝐸𝑡𝑒𝑎𝑚(𝑑, 𝑡𝑒𝑎𝑚,𝑀) |

Prior Managers |𝑀𝑔| |𝑚𝑎𝑛𝑎𝑔𝑒𝑟 : 𝑀 < 𝑚, 𝐸𝑟𝑒𝑝𝑜𝑟𝑡𝑠 (𝑚𝑎𝑛𝑎𝑔𝑒𝑟, 𝑑,𝑀) |

Community Size |𝐶 (𝑑,𝑚) | |𝐿𝑜𝑢𝑣𝑎𝑖𝑛(𝑔) (𝑑,𝑚) |

Katz centrality 𝐾 (𝑑,𝑚) 𝐾 (𝑔(𝑀 < 𝑚&&𝑀 ≥ 𝑚 − 13))

PageRank 𝑃 (𝑑,𝑚) 𝑃 (𝑔(𝑀 < 𝑚&&𝑀 ≥ 𝑚 − 13))

projectsž is likely caused by the superposition of several different

growth curves (corresponding to each project) that plateau at dif-

ferent times but are overlayed on top of each other. The successful

replication to supports the applicability of the key notion of the

learning theory in the context of software development tasks.

Developers’ rate of output either plateaus or continues to

grow at a slower pace depending on the project.

5.2 RQ2. Centrality: Does the centrality of a
developer’s work plateau over time?

The raw number of commits that a developer produces cannot

continue to grow forever. Indeed, according to LPP theory and

extensive empirical evidence discussed in Section 2, as developers

become more experienced, they tend to take on more important

(central) or difficult work. Prior work has found that developers’

centrality continued to increase linearly across the entire tenure

range of three years and the qualitative results suggested that for the

largest projects, the tasks continue to grow in importance even after

ten years [45]. As described in Section 4.5, we calculate PageRank

𝑃 (𝑑,𝑚) and Katz centrality 𝐾 (𝑑,𝑚) for each developer and each

month based on the SSC constructed over the preceding twelve

months. Instead of modeling raw CC, we now want to understand

how the developers’ centrality grows with their tenure. We have

twomodels in R notation:𝐾 (𝑑,𝑚) ∼ 𝑇 (𝑑,𝑚) and 𝑃 (𝑑,𝑚) ∼ 𝑇 (𝑑,𝑚).

Since curves are similar for both models we only show 𝐾 (𝑑,𝑚) ∼

𝑇 (𝑑,𝑚) in Figure 3. The figure shows continued growth over a

much longer period which contrasts with the plateau in the raw

output model in Figure 2. In particular, we do not observe linear

growth in centrality as was reported in [45]. This may be attributed

to the differences between the organizations studied, but it may

also be a result of the differences in the modeled quantity. The

replicated work modeled a very simple local measure of degree

centrality calculated on a partial (containing only authoring edges)

SCC. On the other hand, we model using a more complete SSC and

a centrality measure that takes the entire network into account.

Furthermore, the linear growth does not appear to be compatible

with the key tenet of the learning theory: a decrease in the growth

rate should be manifest.

Table 2: Relative contribution of SSC measures

Model Explanatory Variables 𝑅2

1. 𝑇 + 𝑅 + 𝑃𝑟𝑜 𝑗 + |𝑇𝑚 | + |𝑀𝑔 | 5.3%

2. 𝑇 + 𝑅 + 𝑃𝑟𝑜 𝑗 + |𝑇𝑚 | + |𝑀𝑔 | + |𝐶 | 5.75%

3. 𝑇 + 𝑅 + 𝑃𝑟𝑜 𝑗 + |𝑇𝑚 | + |𝑀𝑔 | + |𝐶 | + 𝑃 30.1%

4. 𝑇 + 𝑅 + 𝑃𝑟𝑜 𝑗 + |𝑇𝑚 | + |𝑀𝑔 | + |𝐶 | + 𝐾 + 𝑃 31.9%

The centrality of the developer’s output continues to grow

for at least three years, but the growth decelerates after

one year.

5.3 RQ 3. Full Model: What is the relative
contribution of the SCC measures in
explaining the number of commits?

The different attributes of the SSC might have a different impact

on developer output. We would like to determine attributes that

are the most influential on (or, in statistical language, explain the

most variation of) the CC.

Table 3: Sign of the Estimated coefficients for the full model

(Model #5)

Sign t value Pr(> |t|)

(Intercept) + 28.00 0.00

|𝐶 | + 12.00 0.00

𝑅 - -43.00 0.00

𝐾 + 130.00 0.00

𝑃 + 140.00 0.00

𝑂 (𝑃𝑟𝑜𝑑𝐵) - -7.80 0.00

𝑂 (𝑃𝑟𝑜𝑑𝐴) + 3.30 0.00

𝑂 (𝑃𝑟𝑜𝑑𝑜𝑡ℎ𝑒𝑟) - -12.00 0.00

|𝑀𝑔 | + 37.00 0.00

|𝑇𝑚 | - -30.00 0.00

To discover that, we start from simple models and measures and

report a fraction of the variance explained as we add more and more

sophisticated explanatory variables to the model. Table 2 shows

how we progressively add explanatory variables to the model and

compare the resultingmodel fit (𝑅2). The response variable is always

developer commits per month, 𝑂 (𝑑,𝑚). The first model contains

only the developer tenure, a categorical variable representing the

project name, whether a developer has reports, and the number

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Audris Mockus, Peter C. Rigby, Rui Abreu, Parth Suresh, Yifen Chen, and Nachiappan Nagappan

0.0 0.5 1.0 1.5 2.0

−
1
.0

0
.0

Prj. A

Tenure

lo
g
(d

if
fs

/m
o
n
th

)

0.0 0.5 1.0 1.5 2.0

−
0
.4

0
.0

Prj. B

Tenure
lo

g
(d

if
fs

/m
o
n
th

)

0.0 0.5 1.0 1.5 2.0

−
0
.4

−
0
.1

0
.2

Prj. C

Tenure

lo
g
(d

if
fs

/m
o
n
th

)

Figure 2: Developer output and Tenure. We see an increase followed by a plateau. Dashed lines show confidence intervals for

the model.

0.0 1.0 2.0 3.0

−
0

.0
0

6
−

0
.0

0
4

−
0

.0
0

2
0

.0
0

0
0

.0
0

2
0

.0
0

4

Prj. A

Tenure

K
a

tz
C

e
n

tr
a

lit
y

0.0 1.0 2.0 3.0

−
0

.0
0

4
−

0
.0

0
2

0
.0

0
0

0
.0

0
2

Prj. B

Tenure

K
a

tz
C

e
n

tr
a

lit
y

0.0 1.0 2.0 3.0

−
0

.0
0

4
−

0
.0

0
2

0
.0

0
0

0
.0

0
2

0
.0

0
4

Prj. C

Tenure

K
a

tz
C

e
n

tr
a

lit
y

Figure 3: Developers’ Katz centrality versus tenure. The centrality of developer work continues to grow, but at a sublinear rate.

of managers and projects. Despite this long list of explanatory

variables, the model only explains the output 𝑅2 = 5.3% of the

observed variation in the output. Adding the size of the empirically-

derived community has a negligible impact, but adding either of

PageRank or Katz centrality results in a much better model fit with

an 𝑅2 above 30%.

To further understand the impact of each explanatory variable,

Table 3 shows the direction of the predictor effects on the rate of

output. Specifically, the size of the community |𝐶 |, Katz centrality𝐾 ,

PageRank 𝑃 , and having more managers all increase output, while

managing others 𝑅 and hopping over many teams 𝑇 decrease it.

Significant differences between products exist, as was hypothesized.

The only relationship that is opposite to our intuition is that the

increase in the number of teams in which a developer has partic-

ipated appears to decrease the rate of output. This may require

further study to better understand the reasons for such decrease,

but it may reflect the fact that repeated re-orgs and project changes

may impact CC. Below we follow with a general discussion of the

findings.

Modeling the Centrality of Developer Output with Software Supply Chains ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

The basic measures including tenure, project, and number

of reports have low predictive power of developer out-

put, 𝑅2 = 5.8%. In contrast, factoring either measure of

centrality into the model produces a 𝑅2 above 30%.

6 DISCUSSION

We have partially replicated the quantitative part of a prior study

investigating the growth of developer output and fluency in a dis-

similar software organization [45]. Our primary aim was not only

to establish the accuracy and generalizability of the scientific claims,

but, more importantly, to find models that have interpretable at-

tributes explaining developer output and to make progress on iden-

tifying potential candidates that provide more nuanced measures

of output and productivity.

While we were able to replicate some of the prior findings, we

also observed some empirical and logical discrepancies that strongly

suggest a revision to the hypotheses posed previously. The growth

rate in the centrality of output in Figure 3 appears to have a slow-

ing growth rate unlike the linear growth observed in [45]. The

simplistic measure of degree of centrality (how many developers

modified a file) used in prior work may not accurately gauge the file

importance unlike Katz centrality or PageRank (measures that also

take into account the centrality of other developers). This slight

but important difference in growth of output centrality from the

inclusion of dependencies among code and graph-theoretic consid-

erations of Katz vs. degree centrality makes more sense because it

is unreasonable to assume a linear growth continuing over a very

long period of time. Replication, whether successful or not, is an

important way to validate scientific [24] and replications of indus-

try studies in software engineering are exceedingly rare [14]. In

fact, in many fields even for exact replication studies most research

results can not be replicated [3, 10, 17]. We, therefore, conclude

that our finding, albeit for a single study, suggest that a successful

replication of industry study may be possible if the original method

is described in sufficient detail.

In addition to replication, we have focused on representing soft-

ware development as a network involving multiple types of nodes

and edges and, more importantly, theorizing how the properties

of such network might enable us to quantify key aspects of Legiti-

mate Peripheral Participation (LPP) theory: peripheral and central

developers, code, or tasks. In fact, it appears that the proposed SSCs

might represent not just great predictors of developer output, but

also serve as proxies of difficulty or impact. Since such measures

can be calculated in most software projects, they may lead to soft-

ware tools that exploit these differences in importance to prioritize

software development or quality assurance work.

From the practical perspective of outlining directions towards

better proxies of developer productivity than the simple raw output,

we introduced a number of robust measures that are not incompat-

ible with the conjecture that they capture some aspects of value

and centrality that go beyond developer output. Specifically, these

measures of centrality are calculated from the entirety of the soft-

ware supply chain including technical dependencies among source

code files, implicit dependencies among files changed in a single

commit, and authorship connecting source code and developers

who modify it. Once developers start working in a project, they

tend to start from simpler, less important tasks and, with more

experience, move towards more complicated and more important

tasks. By constructing the SSC for every month, we can capture the

dynamic nature of developers’ code and use it to explain a large

share of the variation of developer output. In particular, the two

measures of developer’s centrality reflect global properties of the

entire SSC and thus potentially address the concerns that devel-

oper’s output is an individual measure that may or may not help

the productivity of the entire the team.

Future work could investigate other centrality measures beyond

PageRank and Katz centralities and whether other types of network

characteristics may be suitable to measure different aspects of value

produced by developers. We also suspect that PageRank may be a

useful metric to identify code infrastructure and Katz centrality may

be best suited to identify code that requires a particular attention

and may not be an optimal first assignment for newcomers. We also

anticipate using centrality rankings in tasks ranging from reviewer

assignments, code refactoring prioritization, knowledge loss and

numerous other software development tasks.

7 LIMITATIONS

It is difficult to generalize from studies like ours because they in-

vestigate software development in a specific company using spe-

cific tools and practices. Therefore, we replicate existing studies

from other companies that had substantially different development

practices and tools. Section 2 documents key differences we could

identify between our and replicated work.

Some of the concepts like task importance and value and the

associated measures of productivity are not measurable directly.

To increase construct validity, we build indirect evidence by first

pointing out conceptual and empirically demonstrated limitations

of using traditional measures of output as proxies for productivity

and then by presentingmodels of growth in centrality that appear to

represent an intuitive expectation of output growth for an average

developer as they gain experience with code and project.

Statistical and network analysis are sensitive to data quality. We

undertook an enormous effort to a) clean up the data, b) to employ

techniques that would be robust to whatever imperfections may

remain in the data after cleaning, and c) used various diagnostic

techniques to identify potential problems not addressed by a) or b).

Specifically, for data cleaning we used several standard techniques

employed at Meta to identify and exclude copious bot-induced activ-

ity. For each network, we use diagnostics to identify the nodes with

the highest centrality, for example, in the co-change we manually

inspected the most central 1000 files and filter out files changed

with a lot of unrelated files, such as changes.txt containing release

notes. We used top nodes in the author-to-file network to iden-

tify (and exclude) files with high numbers of authors, such as file

containing all global constants.

Meta and many other companies track commits per month as

it tends to vary much less than commits at finer granularity (a

week) yet is fine enough to capture time trends. Developers’ output

includes more than code. The presented model can be enhanced

by adding other trackable types of outputs, such as review activity,

but senior developer tend also to be more involved in training and

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA Audris Mockus, Peter C. Rigby, Rui Abreu, Parth Suresh, Yifen Chen, and Nachiappan Nagappan

coordination tasks that are harder to track. For example, develop-

ers’ managing others have lower commit output than developers

with no reports. The commit was chosen as a fundamental unit of

work because at Meta as in In many other companies, it is strongly

discouraged to have large commits due to issues with review and

testing they pose. To handle vacations months with no output were

excluded.

As is commonly necessary for statistical models in software engi-

neering [8, 25, 26, 28, 29], we log-transformed variables with highly

skewed distributions and inspected correlations among predictors

in the regression as well as inspecting residuals and doing stan-

dard regression diagnostics. The only predictors that showed high

correlations (above 0.7) involved the various output measures we

considered: commits and lines modified per developer per month.

As noted above models for each output measures produced simi-

lar results. Only commit-based models are presented in the paper.

Although 𝑅2 of 30% may not seem very high, we did not include

inherent developer variability. Previous research has incorporated

random effects for each developer, but the extremely large scale

of our dataset was beyond what was possible to analyze using

standard tools.

We investigated the stability of the community detection algo-

rithm by plotting the modularity, the number of clusters, and the

largest size of the cluster and found no observable jumps (indicating

instabilities) in the output.

8 CONCLUSIONS

In 1984 Curtis [13] wrote that until łthe many sources of variation

among individuals have been compared in the same set of data, it

will not be possible to determine . . . the most important predictor

of success.ž In this work, we argued why SSCs should be used

to explain variations in developer output and provide statistical

models indicating that it is possible to explain a large fraction of

variation using SSC-derived measures. The primary theoretical

implication is that even individual developer’s output is an SSC

property, not an individual property. In this work, we make the

following contributions:

(1) We conduct a partial replication of an industry study quanti-

fying output growth when on-boarding: empirical studies in

industrial setting are necessary [21, 38] (replication is one

of the essentials of the experimental methods and success-

ful replication increases the validity and reliability of the

outcomes observed in an experiment) but extremely uncom-

mon [14, 39], and we are not aware of another published

industry replication involving software artifacts conducted

in a completely different industry context.

(2) We propose a unified concept for the Software Supply Chains

that encompasses key measurable types of relationships

among people, software artifacts, and tasks.

(3) We theorize why and how SSC networksmay capture aspects

of the development context that would explain output.

(4) We propose specific ways to characterize (converting into

scalar values associated with specific nodes) SSC networks

for use in statistical modelling.

(5) We take into account the dynamic nature of the SSCs when

characterizing development context.

(6) We suggest global measures of SSC and demonstrate that

they explain the variations in developer output better than

simpler local measures of the SSC.

Related to the specific findings from this study. In RQ1, we repli-

cated [45] at Meta and found the same plateau in raw counts of

number of commits per month. This plateau appears to represent

the time it takes for new developers to become reasonably proficient

on the project. In contrast, for RQ2, the centrality measure of the

number of developers that touched a files used in [45] appears to

be too simplistic a as it continues to grow linearly. In contrast, our

results from RQ2, follow the Legitimate Peripheral Participation

theory that argues that the learners’ participation of practice is at

first legitimately peripheral but increases gradually in engagement

and complexity or, in other words, people engage in more central

work as they become more experienced with a system. Meta ’s

software is massive and complex and even the most experienced

developers may still be learning as they work on increasingly im-

portant problems that have broader, longer term, and profound

impact. Finally, in RQ3, we found that centrality was the best pre-

dictor of the variation of individual developer output with an 𝑅2

above 30%. The model’s coefficients and SSC centrality measures

provide ways to differentiate among SSC nodes such as developers,

different parts of the system, and organization, and we hope that in

future work these SSCs will lead to actionable decisions that could

target specific parts of code or organization.

9 DATA AVAILABILITY

The proprietary nature of the data and systems makes it impossible

to release the data.

REFERENCES
[1] [n. d.]. Louvain Method. https://en.wikipedia.org/wiki/Louvain_method.
[2] Can Güney Aksakalli. [n. d.]. https://aksakalli.github.io/2017/07/17/network-

centrality-measures-and-their-visualization.html#katz-centrality.
https://creativecommons.org/licenses/by-nc-sa/3.0/.

[3] Jens B Asendorpf, Mark Conner, Filip De Fruyt, Jan De Houwer, Jaap JA Denissen,
Klaus Fiedler, Susann Fiedler, David C Funder, Reinhold Kliegl, Brian A Nosek,
et al. 2016. Recommendations for increasing replicability in psychology. (2016).

[4] D. Atkins, T. Ball, T. Graves, and A. Mockus. 1999. Using Version Control Data
to Evaluate the Effectiveness of Software Tools. In 1999 International Conference
on Software Engineering. ACM Press, 324ś333. papers/ve

[5] D. Atkins, T. Ball, T. Graves, and A. Mockus. 2002. Using Version Control Data to
Evaluate the Impact of Software Tools: A Case Study of the Version Editor. IEEE
Transactions on Software Engineering 28, 7 (July 2002), 625ś637. papers/vedraft.
pdf

[6] Arthur Gilbert Bills. 1934. General Experimental Psychology. Kessinger Publishing.
197-206.

[7] C. Binder, E. Haughton, and B. Bateman. 2002. Fluency: Achieving true mastery
in the learning process. Technical Report. University of Virginia Curry School of
Special Education. Professional Papers in Special Education.

[8] B.W. Boehm. 1981. Software Engineering Economics. Prentice-Hall.
[9] B. W. Boehm, B. Clark, E. Horowitz, and et al. 1995. Cost Models for Future

Software Life Cycle Processes: COCOMO 2.0. Annals of Software Engineering 1, 1
(November 1995), 1ś24.

[10] Colin F Camerer, Anna Dreber, Felix Holzmeister, Teck-Hua Ho, Jürgen Huber,
Magnus Johannesson, Michael Kirchler, Gideon Nave, Brian A Nosek, Thomas
Pfeiffer, et al. 2018. Evaluating the replicability of social science experiments in
Nature and Science between 2010 and 2015. Nature Human Behaviour 2, 9 (2018),
637ś644.

[11] Marcelo Cataldo, Patrick A Wagstrom, James D Herbsleb, and Kathleen M Carley.
2006. Identification of coordination requirements: Implications for the design of
collaboration and awareness tools. In Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work. 353ś362.

[12] B Curtis. 1981. Substantiating programmer variability. In Proceedings of the IEEE
69.

https://en.wikipedia.org/wiki/Louvain_method
https://aksakalli.github.io/2017/07/17/network-centrality-measures-and-their-visualization.html#katz-centrality
https://aksakalli.github.io/2017/07/17/network-centrality-measures-and-their-visualization.html#katz-centrality
papers/ve
papers/vedraft.pdf
papers/vedraft.pdf

Modeling the Centrality of Developer Output with Software Supply Chains ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

[13] B. Curtis. 1984. Fifteen Years of Psychology in Software Engineering: Individual
Differences & Cognitive Science. In ICSE’84. 97ś106.

[14] Fabio QB Da Silva, Marcos Suassuna, A César C França, Alicia M Grubb, Tatiana B
Gouveia, Cleviton VF Monteiro, and Igor Ebrahim dos Santos. 2014. Replication
of empirical studies in software engineering research: a systematic mapping
study. Empirical Software Engineering 19, 3 (2014), 501ś557.

[15] Todd L. Graves and Audris Mockus. 1998. Inferring Programmer Effort from
Software Databases. In 22nd European Meeting of Statisticians and 7th Vilnius
Conference on Probability Theory and Mathematical Statistics. Vilnius, Lithuania,
334.

[16] T. J. Hastie and R. J. Tibshirani. 1990. Generalized Additive Models. Chapman &
Hall.

[17] John PA Ioannidis. 2005. Why most published research findings are false. PLoS
medicine 2, 8 (2005), e124.

[18] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle.
2015. From Developer Networks to Verified Communities: A Fine-Grained Ap-
proach. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, Vol. 1. 563ś573. https://doi.org/10.1109/ICSE.2015.73

[19] Mitchell Joblin, Wolfgang Mauerer, Sven Apel, Janet Siegmund, and Dirk Riehle.
2015. From developer networks to verified communities: A fine-grained approach.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 1. IEEE, 563ś573.

[20] Maggie Johnson andMax Senges. 2010. Learning to be a programmer in a complex
organization: A case study on practice-based learning during the onboarding
process at Google. Journal of Workplace Learning (2010).

[21] Natalia Juristo and Omar S Gómez. 2010. Replication of software engineering
experiments. In Empirical software engineering and verification. Springer, 60ś88.

[22] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1 (1953), 39ś43.

[23] J. Lave and E. Wenger. 1991. Situated Learning. Legitimate Peripheral Participation.
Cambridge University Press, Cambridge.

[24] Stephanie Miceli. 2019. Reproducibility and replicability in research. I: The
National Academies In Focus 18 (2019), 12ś14.

[25] Audris Mockus. 2007. Software Support Tools and Experimental Work. In
Empirical Software Engineering Issues: Critical Assessments and Future Directions,
V Basili and et al (Eds.). Vol. LNCS 4336. Springer, 91ś99. papers/SSTaEW.pdf

[26] Audris Mockus. 2008. Missing data in software engineering. In Guide to Advanced
Empirical Software Engineering, J. Singer et al. (Ed.). Springer-Verlag, 185ś200.
papers/missing.pdf

[27] Audris Mockus. 2009. Organizational Volatility and Developer Productivity.
In ICSE Workshop on Socio-Technical Congruence. Vancouver, Canada. papers/
orgvolatility.pdf

[28] Audris Mockus. 2010. Organizational Volatility and its Effects on Software
Defects. In ACM SIGSOFT / FSE. Santa Fe, New Mexico, 117ś126. http://dl.acm.
org/authorize?309271

[29] Audris Mockus. 2014. Engineering Big Data Solutions. In ICSE’14 FOSE. https:
//dl.acm.org/authorize?N14216

[30] Kjetil Molokken and Magne Jorgensen. 2003. A review of software surveys on
software effort estimation. In 2003 International Symposium on Empirical Software

Engineering, 2003. ISESE 2003. Proceedings. IEEE, 223ś230.
[31] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[32] Xinyu Que, Fabio Checconi, Fabrizio Petrini, Teng Wang, and Weikuan Yu. 2013.
Lightning-fast community detection in social media: A scalable implementation of
the louvain algorithm. Department of Computer Science and Software Engineering,
Auburn University, Tech. Rep. AU-CSSE-PASL/13-TR01 (2013).

[33] R Development Core Team. 2008. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. http:
//www.R-project.org ISBN 3-900051-07-0.

[34] Md Tajmilur Rahman, Louis-Philippe Querel, Peter C. Rigby, and Bram Adams.
2016. Feature Toggles: Practitioner Practices and a Case Study. In Proceedings of
the 13th International Conference on Mining Software Repositories (Austin, Texas)
(MSR ’16). Association for Computing Machinery, New York, NY, USA, 201ś211.
https://doi.org/10.1145/2901739.2901745

[35] FE Ritter, LJ Schooler, et al. 2002. The learning curve. International encyclopedia
of the social and behavioral sciences. In Amsterdam: Pergamon). 8605.

[36] F. E. Ritter and L. J. Schooler. 2002. International Encyclopedia of the Social
and Behavioral Sciences. Pergamon, Amsterdam, Chapter The learning curve,
8602ś8605.

[37] Paige Rodeghero, Thomas Zimmermann, Brian Houck, and Denae Ford. 2021.
Please turn your cameras on: Remote onboarding of software developers dur-
ing a pandemic. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 41ś50.

[38] Martin Shepperd, Nemitari Ajienka, and Steve Counsell. 2018. The role and value
of replication in empirical software engineering results. Information and Software
Technology 99 (2018), 120ś132.

[39] Dag IK Sjùberg, Jo Erskine Hannay, Ove Hansen, Vigdis By Kampenes, Amela
Karahasanovic, N-K Liborg, and Anette C Rekdal. 2005. A survey of controlled
experiments in software engineering. IEEE transactions on software engineering
31, 9 (2005), 733ś753.

[40] Christian L Staudt and Henning Meyerhenke. 2015. Engineering parallel al-
gorithms for community detection in massive networks. IEEE Transactions on
Parallel and Distributed Systems 27, 1 (2015), 171ś184.

[41] Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. 2016. Net-
worKit: A tool suite for large-scale complex network analysis. Network Science 4,
4 (2016), 508ś530.

[42] Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. 2003. Community,
joining, and specialization in open source software innovation: a case study.
Research Policy 32, 7 (July 2003), 1217ś1241.

[43] S. N. Wood. 2006. Generalized Additive Models: An Introduction with R. Chapman
& Hall.

[44] Yunwen Ye and Kouichi Kishida. 2003. Toward an understanding of themotivation
of Open Source Software developers. In ICSE 2003. Portland, Oregon, 419ś429.

[45] Minghui Zhou and Audris Mockus. 2010. Developer Fluency: Achieving True
Mastery in Software Projects. In ACM SIGSOFT / FSE. Santa Fe, New Mexico,
137ś146. http://dl.acm.org/authorize?309273

https://doi.org/10.1109/ICSE.2015.73
papers/SSTaEW.pdf
papers/missing.pdf
papers/orgvolatility.pdf
papers/orgvolatility.pdf
http://dl.acm.org/authorize?309271
http://dl.acm.org/authorize?309271
https://dl.acm.org/authorize?N14216
https://dl.acm.org/authorize?N14216
http://www.R-project.org
http://www.R-project.org
https://doi.org/10.1145/2901739.2901745
http://dl.acm.org/authorize?309273

	Abstract
	1 Introduction
	2 Related Work
	3 Software Development Process at Meta
	4 Methodology and Background
	4.1 Background on Software supply chains
	4.2 Basic network measures of SSCs
	4.3 Constructing SSCs at Meta
	4.4 Learning Curve and Developer Output
	4.5 Operationalizing SSCs and Measures

	5 Results
	5.1 RQ1. Output vs Tenure: How quickly do new developers become productive in terms of number of commits?
	5.2 RQ2. Centrality: Does the centrality of a developer's work plateau over time?
	5.3 RQ 3. Full Model: What is the relative contribution of the SCC measures in explaining the number of commits?

	6 Discussion
	7 Limitations
	8 Conclusions
	9 Data Availability
	References

