
Measuring Distributed Development

Audris Mockus

audris@avaya.com

Avaya Labs Research

Basking Ridge, NJ 07920

http://mockus.org/

Globally Distributed software development

Developers distributed over the world

Why?

2 Audris Mockus Measuring Distributed Development ICGSE, 2010

Why SW development is and will be globally
distributed?

National policies

Customer presence/local expertise

Easy/electronic transfer of the product

Available and inexpensive tele/data comm.

Lack of qualified IT workers in some countries/locations

Potential for lower costs

Potential for round-the-clock development

3 Audris Mockus Measuring Distributed Development ICGSE, 2010

How many locations?

4 Audris Mockus Measuring Distributed Development ICGSE, 2010

Gnome: several hundred developers

5 Audris Mockus Measuring Distributed Development ICGSE, 2010

A large network switch: several thousand developers

 7

Nuremberg

Naperville
Swindon

Malmesbury
Chippenham

Bangalore

Dublin

Paris

Lannion

Hilversum
Huizen

Brussels
Columbus

Sydney

6 Audris Mockus Measuring Distributed Development ICGSE, 2010

How distributed developers communicate?

Use MR systems (e.g., Bugzilla, ClearQuest)

Use Version Control Systems

(e.g., CVS/SVN/Git/Mercurial/Bazaar/ClearCase)

7 Audris Mockus Measuring Distributed Development ICGSE, 2010

All development tasks are tracked via MRs

✦ Stages

✧ Opened/Created

✧ Developer decides to change code

✧ User (or tester) experiences a fault with software and complains

✧ New feature is started

✧ Assigned: a person is assigned to solve the task

✧ Submitted (code changed)/NoChanged/ReAssigned

✧ Verified

✦ Example MR systems: Bugzilla

8 Audris Mockus Measuring Distributed Development ICGSE, 2010

Commit

Product: Evolution

Component: Contacts

Version: 2.31.x

Status: UNCONFIRMED

Priority: Urgent

Severity: critical

[reply] [-]Description

[reply] [-]Comment 1

First Last Prev Next No search results available

Bug 616911 - Crash in load_books_thread at e-name-selector.c:115

Collapse All Comments - Expand All Comments

Akhil Laddha [reporter] 2010-04-27 04:51:11 UTC

evolution 2.31.1

I double clicked on one of the mails in local draft folder and evolution
crashed.

(evolution:6921): GLib-GObject-WARNING **: invalid cast from `CamelIMAPXStore'
to `CamelOfflineStore'

(evolution:6921): GLib-GObject-WARNING **: invalid cast from `CamelIMAPXStore'
to `CamelOfflineStore'
[New Thread 0xa73ffb70 (LWP 6963)]
[New Thread 0xb2a11b70 (LWP 6964)]
[New Thread 0xaa951b70 (LWP 6965)]

(evolution:6921): GLib-CRITICAL **: g_array_append_vals: assertion `array'
failed

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0xaa951b70 (LWP 6965)]
0xb7802a14 in load_books_thread (user_data=0x8a01cc8) at e-name-selector.c:115
115 if (name_selector->priv->sections) {
(gdb) t a a bt

+ Trace 221563

(gdb)

Akhil Laddha [reporter] 2010-06-01 06:23:09 UTC

I get same crash *atleast* once per day :(

Bug 616911 – Crash in load_books_thread at e-nam... https://bugzilla.gnome.org/show_bug.cgi?id=616911

1 of 3 07/27/2010 06:37 AM

[reply] [-]Comment 2

[reply] [-]Comment 3

Commit

View All

Milan Crha [developer] 2010-06-01 10:50:41 UTC

Created an attachment (id=162450) [details]
debug eds patch

for evolution-data-server;

It'll print that the name_selector_gone on a console when it'll be freed during
the load_books_thread. If you see such print on evolution's console, do a
breakpoint and see when it gone:
 $ gdb evolution --ex "b name_selector_gone" --ex r
though I believe simple g_object_ref/unref on the name_selector in
load_books_thread will be the fix needed here. But let's see.

Milan Crha [developer] 2010-07-08 19:35:34 UTC

You told me on IRC that you cannot reproduce the crash with this patch applied,
but you can still reproduce it without it. Could you try with a patch which
will have removed all the chunk
> @@ -112,11 +119,11 @@ load_books_thread (gpointer user_data)
because maybe it does the difference, please?

Additional Comments:

Status:UNCONFIRMED

Attachments

debug eds patch (1.94 KB, text/plain)
2010-06-01 10:50 UTC, Milan Crha

Details

Add an attachment (proposed patch, testcase, etc.)

Status: UNCONFIRMED

Product: Evolution

Component: Contacts

Version: 2.31.x

OS: Linux

Importance: Urgent critical

Target Milestone: ---

Assigned To: evolution-addressbook-maintainers@ximian.com

QA Contact: Evolution QA team

Whiteboard:

Reported: 2010-04-27 04:51 UTC by
Akhil Laddha

Modified: 2010-07-08 19:35 UTC
(History)

CC List:
 Add me to CC list

1 user (edit)

See Also:

GNOME

target:

GNOME

version:

2.29/2.30

Bug 616911 – Crash in load_books_thread at e-nam... https://bugzilla.gnome.org/show_bug.cgi?id=616911

2 of 3 07/27/2010 06:45 AM

9 Audris Mockus Measuring Distributed Development ICGSE, 2010

The transition frequency among MR states in Mozilla

10 Audris Mockus Measuring Distributed Development ICGSE, 2010

Developers create software bychanges
✦ All changesare recorded

✦ The product/code is simply a dynamic superposition of changes

Before:

int i = n;

while(i++)

prinf(” %d”, i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(” %d”, i−−);

✦ one line deleted

✦ two lines added

✦ two lines unchanged

✦ Other attributes: date, developer, defect number, . . .

✦ Version Control System (VCS) track them, e.g., CVS/SVN/Git
11 Audris Mockus Measuring Distributed Development ICGSE, 2010

cvsblame:
Who changed each

line

Revision number

Bonsai version 1.3.9

CVS Blame
cm3/ m3-sys/ m3cc/ gcc/ gcc/ tree-scalar-evolution.h (1.2)

LXR: Cross Reference
Full Change Log

 1 hosking 1.1 /* Scalar evolution detector.
 2 jkrell 1.2 Copyright (C) 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
 3 hosking 1.1 Contributed by Sebastian Pop <s.pop@laposte.net>
 4
 5 This file is part of GCC.
 6
 7 GCC is free software; you can redistribute it and/or modify it under
 8 the terms of the GNU General Public License as published by the Free
 9 jkrell 1.2 Software Foundation; either version 3, or (at your option) any later
10 hosking 1.1 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 jkrell 1.2 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20 hosking 1.1
21 #ifndef GCC_TREE_SCALAR_EVOLUTION_H
22 #define GCC_TREE_SCALAR_EVOLUTION_H
23
24 jkrell 1.2 extern tree number_of_latch_executions (struct loop *);
25 extern tree number_of_exit_cond_executions (struct loop *);
26 extern tree get_loop_exit_condition (const struct loop *);
27 hosking 1.1
28 jkrell 1.2 extern void scev_initialize (void);
29 hosking 1.1 extern void scev_reset (void);
30 extern void scev_finalize (void);
31 extern tree analyze_scalar_evolution (struct loop *, tree);
32 extern tree instantiate_parameters (struct loop *, tree);
33 jkrell 1.2 extern tree resolve_mixers (struct loop *, tree);
34 hosking 1.1 extern void gather_stats_on_scev_database (void);
35 extern void scev_analysis (void);
36 jkrell 1.2 unsigned int scev_const_prop (void);
37 hosking 1.1
38 jkrell 1.2 bool expression_expensive_p (tree);
39 extern bool simple_iv (struct loop *, tree, tree, affine_iv *, bool);
40
41 /* Returns the loop of the polynomial chrec CHREC. */
42 hosking 1.1
43 jkrell 1.2 static inline struct loop *
44 get_chrec_loop (const_tree chrec)
45 hosking 1.1 {
46 jkrell 1.2 return get_loop (CHREC_VARIABLE (chrec));
47 }
48 hosking 1.1
49 #endif /* GCC_TREE_SCALAR_EVOLUTION_H */

Page configuration and help. Mail feedback to <tinderbox@elegosoft.com>.

12 Audris Mockus Measuring Distributed Development ICGSE, 2010

SeeSoft: can show many files

13 Audris Mockus Measuring Distributed Development ICGSE, 2010

Challenges and solutions?

Transfer of ownership

Chunking Code

Finding Expertise

14 Audris Mockus Measuring Distributed Development ICGSE, 2010

Transfer

of

Ownership

15 Audris Mockus Measuring Distributed Development ICGSE, 2010

Succession
✦ Definitions

✧ Implicit teams are groups based on the affinity to the parts of the

product they work(ed) on.

✧ Succession is the transfer of responsibilities to maintain and enhance

the product within animplicit team.

✧ The receiving party:follower

✧ The transferring party:mentor

✧ In general, followers and mentors do not need to communicatewith

each other.

✦ Objective: measuresuccession and its impact.

16 Audris Mockus Measuring Distributed Development ICGSE, 2010

How to measure succession?
✦ Projections

✧ “Engaging” with the code often leads to changing the code

✧ The chronological order of engagements bymentors andfollowers

should be reflected in the temporal order of changes

✦ Therefore:

✧ Implicit team: developers changing the same packages, files,

methods, or lines

✧ Succession: pairs of developers with the most clear succession

signature

✧ More shared code

✧ Stronger chronological sequence

17 Audris Mockus Measuring Distributed Development ICGSE, 2010

Data sources: most of Avaya’s projects
✦ People: organizational Directory (LDAP) snapshots

✧ Chronology: late 2001 and early 2003. Early 2004 until present:

weekly extracts.

✧ Attributes: personal ID, supervisor ID, department, location, phone,

email

✦ People to login maps

✧ Yellow pages (NIS), weekly extracts from three clusters

✧ login to LDAP attributes, name

✧ Proprietary problem reporting system (QQ), weekly extracts

✧ login to name, email

✦ Version control systems

✧ Chronology: 1990 until present, varies with project

✧ Attributes: login, date, file

18 Audris Mockus Measuring Distributed Development ICGSE, 2010

Illustration of succession signatures

Mentor m is:

m = argmaxd∈{Developers} S(d,m)

S(d,m): number of files touched by

d andm weighted by fraction of file’s

changes made byd andm.

S(d,m) = 1+1

2

S(m, d) = 2+1

4

=⇒ m mentors d

19 Audris Mockus Measuring Distributed Development ICGSE, 2010

Organizational socialization: succession
✦ Hypotheses

✧ Offshoring succession is less informal/random=⇒ less innovation

✧ Mentors with expertise dispersed over several products would

provide mentorship that leads to more innovation

✧ Mentors that transfer expertise of their secondary products would

lead to less innovation by the followers

✧ Mentors with more followers would have less innovative followers

✧ Products with the oldest and largest code bases are likely tohave

lower productivity ratios

✧ The effectiveness of expertise transfer increases over time as the

organization improves its offshoring practices

✦ Custodial responses are likely to lead to a lower productivity ratio

because followers will have to learn from mentor’s example

✦ Productivity: number of delta (atomic changes) per month
20 Audris Mockus Measuring Distributed Development ICGSE, 2010

The productivity ratio model

Table 1:log(Ratio) = T ime+Offshore+Primary+Breadth+

Size+ log(NFollow). 1012 mentor-follower pairs. Adj-R2 = 59.

Estimate p-value eest 95%CI

Time of transfer −0.01 0.31

Offshoring −0.63 0.00 1

2
[0.42, 0.67]

Primary expertise −0.68 0.00 1

2
[0.40, 0.64]

Expertise breadth −1.41 0.00 1

2
[0.38, 0.64]

Large prod. −1.21 0.00 1

3
[0.21, 0.42]

Medium prod. −0.46 0.00 2

3
[0.52, 0.77]

ln(NF) −0.53 0.00
√
NF

21 Audris Mockus Measuring Distributed Development ICGSE, 2010

Practical implications

✦ Matches observed empirical rule (a team of four or five to replace

one experienced developer)

✦ Start with small and new projects

✦ Take more time to transfer

✦ Do not overload mentors with too many followers

✦ Focus on mentor’s primary expertise

22 Audris Mockus Measuring Distributed Development ICGSE, 2010

Chunking

Code

23 Audris Mockus Measuring Distributed Development ICGSE, 2010

Marching orders

Find four candidate pieces of 10 to 20 technical headcount years each

by April 4th.

Each piece must represent independent functionality.

P. L.

February 1999

24 Audris Mockus Measuring Distributed Development ICGSE, 2010

History

In 1983 LNS development started in Naperville, IL, USE.

In 1985 LNS development started in Holland, and UK. Next major

location was Poland in 1993.

Plans to start development in China, other locations

25 Audris Mockus Measuring Distributed Development ICGSE, 2010

Current practice (1999)

Globalization decisions are made in an ad-hoc fashion

When resources become available

Move the least important parts

Move locality specific customization work

Move releases in later maintenance stages

If something goes wrong - move it back to the main location

26 Audris Mockus Measuring Distributed Development ICGSE, 2010

Results of such decisions
Code bounces from location to location over time

(lost productivity in learning new functionality)

Impossible to learn: consequences of decisions are not known

27 Audris Mockus Measuring Distributed Development ICGSE, 2010

Globalization problem: how to allocate
development tasks?

Aid decision making process by finding a subset of functionality that

are most appropriate for spare resources in location X:

Is independently changeable (cohesive)

Currently distributed across locations (high current cost)

Matches expertise profile and spare capacity of location X

28 Audris Mockus Measuring Distributed Development ICGSE, 2010

Define the problem

To reduce the number multi-site work items (MRs) by re-assigning

work among sites

1) Discretize code and work:

Code units (CU) — functional areas to be assigned

Work units (WU) — MRs

2) Find subsets of CUs for each site based on criteria

Number of cross-site work units

Effort to maintain assigned units

3) Evaluate a set of candidates: Work Units and Code Units

29 Audris Mockus Measuring Distributed Development ICGSE, 2010

Algorithm
Choose initial set X of CUs randomly so that it has 10 to 20 THCY

pick at random CUy ∈ ¬X and do A) with probability

τ or do B) with probability1− τ

A) add y to X with probability 1 if adding decreases criteria,else add

with probabilityµ reject if THCY window is substantially violated

B) choose at random CUz ∈ X and swap z and y with probability 1

swapping decreases criteria, else swap with probabilityπ

reject if effort constraints are substantially violated

record set X with best criteria for a number of effort ranges

Criteria: # MR touchingX and¬X

30 Audris Mockus Measuring Distributed Development ICGSE, 2010

X — green,¬X — blue,

If y is added toX, ∆ = −2 + 3 = 1.

If y is exchanged withz (y added toX, andz to¬X): ∆ = −1− 1 + 3 + 3 = 4

y

z

31 Audris Mockus Measuring Distributed Development ICGSE, 2010

Evaluation of Candidates

Several candidate re-assignments of CUs

a) Generated using algorithm

b) Proposed by developers

For each candidate present

Fraction of multi-site MRs

Effort trend (to predict effort needed in the future)

List of CUs

32 Audris Mockus Measuring Distributed Development ICGSE, 2010

% of changes touching

other code plotted over time

total effort % of effort in England in Germany

Details for candidate (b)

Globalization candidates (a) and (b)

33 Audris Mockus Measuring Distributed Development ICGSE, 2010

Finding

Expertise

34 Audris Mockus Measuring Distributed Development ICGSE, 2010

How to locate people/organizations with
specific experience?

Large software systems are complex

Few people understand entire system, but

Each part of a system has several experts

Each person is an expert on some parts of a system

Can one build a tool to perform tasks 1 and 2, i.e.,

How to find people who know a specific part of the code?

How to make developers aware of changes impacting their

work?

35 Audris Mockus Measuring Distributed Development ICGSE, 2010

Expertise (Experience) Measures

Expertise: Ability effectively to understand, enhance, fix, or test a part

of a software system

Experience: Amount of work (number of changes) performed ona

part of a software system

Expertise↑ Experience

Expertise can be estimated

directly from effort spent

36 Audris Mockus Measuring Distributed Development ICGSE, 2010

Experience Atoms (EAs)

Each change to the code is a unit of experience or EA

Each EA identifies developer, date, file, change purpose (fix,new),

problem report, language used, . . .

These properties are used to filter types of experience

37 Audris Mockus Measuring Distributed Development ICGSE, 2010

Expertise Browser

Obtain and present relationships between code and people and

organizations based on Experience Atoms (EAs) shared between CU

and person

38 Audris Mockus Measuring Distributed Development ICGSE, 2010

Expert Search
Select a code unit to show experts

All developers, their supervisors, and organizations Ordered by

expertise

Developers at the top are most relevant

The largest font reflects most experience

Color identifies geographic location of the subject

39 Audris Mockus Measuring Distributed Development ICGSE, 2010

Resume View

Select a person to show

Fraction of EAs for CUs

Contact info

Select an org. to show

All developers in the organiza-

tion/group

Fraction of EAs contributed by

these developers for each CU

40 Audris Mockus Measuring Distributed Development ICGSE, 2010

What have we done?

41 Audris Mockus Measuring Distributed Development ICGSE, 2010

✦ Fundamental questions about human and collective nature

✧ X is the study ofpast human events and activities

✧ Y is the study of humancultures through therecovery,

documentation and analysis of material remains

✧ Z is the study of developercultures andbehaviorsthrough the

recovery, documentation and analysis of digital remains

✦ Is it X, Y, or Z?

42 Audris Mockus Measuring Distributed Development ICGSE, 2010

Any wiser now?

Business problems need measurement?

Large and distributed development organizations need datato work

effectively?

Bug tracking and VCS systems are a rich source of informationabout

what people (developers) do?

and

perhaps they tell . . .

43 Audris Mockus Measuring Distributed Development ICGSE, 2010

Whatweshould do?

44 Audris Mockus Measuring Distributed Development ICGSE, 2010

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org

Audris Mockus is interested in quantifying, modeling, and improving software development. He

designs data mining methods to summarize and augment software change data, interactive

visualization techniques to inspect, present, and controlthe development process, and statistical

models and optimization techniques to understand the relationships among people, organizations,

and characteristics of a software product. Audris Mockus received B.S. and M.S. in Applied

Mathematics from Moscow Institute of Physics and Technology in 1988. In 1991 he received M.S.

and in 1994 he received Ph.D. in Statistics from Carnegie Mellon University. He works in Avaya

Labs Research. Previously he worked in the Software Production Research Department of Bell

Labs.

