
Practice Evolution Explorer

Jialiang Xie∗, Minghui Zhou∗, Audris Mockus†, Xiujuan Ma∗ and Hong Mei∗
∗School of Electronics Engineering and Computer Science, Peking University

Key Laboratory of High Confidence Software Technologies, Ministry of Education
Beijing 100871, China

{xiejl11@sei.,zhmh@,maxj07@sei.,meih@}pku.edu.cn
† Avaya Labs Research

233 Mt Airy Rd, Basking Ridge, NJ
audris@avaya.com

Abstract—Reporting and resolving issues is an essential
part of software development. This is accomplished primarily
by volunteers in OSS projects and by service providers in
commercial projects. Project environment often changes, e.g.,
the number of users may increase, and, to be successful,
the projects develop new practices to cope with changes.
We want to understand how the issue resolution practices
evolve over time, how efficient and effective they are, and
how they can be improved. We use ubiquitous records in the
issue tracking systems to discover practice evolution and to
quantify their impact. We built Practice Evolution Explore r
(Pe

2 ) tool to visualize and understand issue tracking data
via linked views/selectors representing properties of issues
and issue transitions between states. We illustrate how to
detect inadequate practices and how to quantify the impact
of project decisions on service quality and efficiency. We plan
to apply Pe

2 in both commercial and open sources projects to
improve the quality of responses to user-reported issues while
minimizing the effort needed to achieve that improvement. In
particular, we would like to investigate how the commercial
projects could achieve the rapid response times observed in
OSS.

Keywords-Practice evolution; issue resolution time; service
quality; issue quality

I. I NTRODUCTION

Responsiveness to user issues is essential to software
project’s success. In open source projects input from users
is critical for improving product quality, because many
issues are found, reported, and sometimes fixed by early
adopters [1]. It is, therefore, of interest to understand how
projects engage users and volunteers and how such practices
evolve in response to external changes. To achieve that we
ask two research questions:

• Can we discover issue reporting and resolution prac-
tices and their evolution?

• Can we quantify the impact of these practices on
service quality and help projects choose most suitable
practices?

To answer these questions we first performed a qualitative
study to understand the nature of these practices and their
importance to the projects. In Gnome and Mozilla bug
triaging (a common way to refer to practices used to report

and resolve issues) was of great importance and participants
primarily used issue tracking system both, to understand
what is going on and to change some key practices. “Pro-
cesses that limit the size or potential of our community
limit Mozilla. Conversely, making it easier for people to
cooperate, collaborate, experiment and play enhances the
community’s capacity”1, according to a volunteer group
developing community management metrics and tools for
Mozilla. It is, therefore, critical to understand practices
employed by a project and to address their weaknesses.
Otherwise valuable contributors might leave. For example,
one long-time contributor left “because of a general lack of
interest in doing anything substantial to improve the Triage
process”2.

Issue-tracking systems are widely used in software
projects and they record the way tasks are assigned, prob-
lems are discussed, and issues are resolved. Such data
contains a detailed history of the project and might providea
way to find out decisions that were problematic or practices
that proved beneficial. To cope with complexity of issue
tracking data we developed Practice Evolution Explorer3

(Pe
2 ) to spot anomalies and to quantify relevant measures

of service quality (delay and effort). It visualizes transitions
between states, time trends, and issue attributes and, based
on these views, lets user select subsets of interest.

Using Gnome project we illustrate how we used the tool
to detect several dramatic changes in the issue tracking
practices and how the tool could be used to rapidly detect
the impact of new technology and to find effective solution.

We make two contributions: First,Pe
2helps to detect

anomalies (and thus, evolution) in issue resolution practices.
Second, it may help to design better practices and to avoid
costly mistakes by quantifying the potential implicationsfor
quality and effort.

1http://eaves.ca/2011/04/07/developing-community-management-
metrics-and-tools-for-mozilla/

2http://tylerdowner.wordpress.com/2011/08/27/some-clarification-and-
musings/

3http://www.youtube.com/watch?v=y9O37OTecbE, and http://passion-
lab.org/pee.html



We illustratePe
2with two scenarios of practice changes

discovered in Gnome in Section II, and describe design con-
siderations and other details in Section III and Section IV.
The related work is presented in Section V. Future work and
summary are in the last section.

II. PRACTICE EVOLUTION

We illustratePe
2on a large Bugzilla repository of Gnome

software eco-system. Gnome implements user interface
functionality, and has more than 10 years of history and
more than 600K issues.

We use term “issue quality” to designate the fraction
of issues in the sample that were resolved as fixed. For
example, a high proportion of invalid or duplicate issue
reports would waste time of project participants who need
to ascertain the validity of such issues.

We use term “service quality” to refer to the time until
90% of the issues are resolved (average time is not a robust
measure because of the statistical distribution of resolution
times). A shorter resolution time implies rapid response to
user concerns, thus representing good service quality.

A. Issue states

An issue is created by an issue reporter and handled
(triaged) by project participants. In the course of the triage
and resolution issues transfer through a predefined set of
states. For example, Gnome defines standard steps of triag-
ing 4. An issue is reported (born) in an UNCONFIRMED
state. When a triager confirms it as a valid issue, its state
is changed to NEW. Alternatively, if it is, for example,
a duplicate, it may be immediately resolved and its state
changed to RESOLVED. When the report does not contain
sufficient information to reproduce and fix, the state would
be changed to NEEDINFO. Issues in state NEW are to
be assigned and need to be resolved. The assignee may
accept the issue (state ASSIGNED), or pass it to someone
else (issue remains in the state NEW), or resolve it (state
RESOLVED). However, in practice the transition sequence
varies, as the scenarios below show.

Each “RESOLVED” issue has a resolution, e.g., FIXED,
DUPLICATE, INCOMPLETE, or INVALID.

B. NEW vs UNCONFIRMED

The first simple scenario depicted in the brief video3

illustrates the adjustment to the policy of reporting issues.
The new policy restricted the population of participants
who can report issues directly in state “NEW” instead
of state “UNCONFIRMED”. Issues in state “NEW” are
considered to be valid issues while the validity still needs
to be established for issues in state “UNCONFIRMED”.

With Pe
2 it is easy to detect this change by selecting the

issues that start with state “NEW” with the transition filter
(see Section IV-D). The timeline view shows the dramatic

4http://live.gnome.org/Bugsquad/TriageGuide

Figure 1. A change of “NEW” issues in the timeline view

a b c

Figure 2. Quality of “NEW” issues in 2001, 2003, and 2004

rise from 40% of reported issues in state “NEW” in 2001
rising to 60% in 2003 before rapidly dropping to 10% after
April of 2004 (see the black line in Figure 1) . Investigating
what happened in 2001 (by selecting one year interval in the
timeline view and observing the barchart of the distribution
of resolutions) we found that 65% of these “NEW” issues
were ultimately fixed, while in 2003 only 60% of them were
fixed (see Figure 2a and 2b).

Clearly such drop suggests that the quality of “NEW”
issues has gone down and that restricting the pool of partic-
ipants with a privilege to report an issue in “NEW” state may
improve the situation. The actions undertaken by the project
lead to a much smaller fraction of “NEW” issues. However,
the issue quality did not improve: only 50% of the issues
reported as “NEW” were fixed in 2004 (Figure 2c) — an
even smaller fraction than in 2003. Furthermore, the service
quality also decreased: a calendar year prior to April 2004
it took 9 months to resolve 90% of issues while during the
subsequent calendar year it took 9.7 months. It is, therefore,
not clear if the intervention achieved its desired goals.

C. Usability of crash reporter

The second example of practice evolution in the video3

is driven by the desire to let more Gnome users participate
in issue reporting via crash reporting tool Bug-Buddy5. As
Figure 3 shows, a dramatic peak with 11,600 new issues is
visible in September, 2006, while during the prior month
there were only 2,600 new issues. Of these September
new issues, 82% were submitted via Bug-Buddy. While
Bug-Buddy was introduced several years prior to that, the
particular version 2.16 that became available in September
has made it much easier for unsophisticated Gnome users
to report issues. Earlier, users had to install and configure
sendmail package or report an issue using Bugzilla web
site. The innovation initially looked promising to project
participants: “With the new Bug-Buddy, we’re all receiving

5When an application using the GNOME libraries crashes, Bug-Buddy
generates a stack trace using gdb and invites the user to submit the report
to the GNOME bugzilla.



Figure 3. A peak of new-born issues in the timeline view

Figure 4. Workflow with NEEDINFO in the transition view

tons of new bugs. It’s good, since we now know about some
crashers we didn’t know before.”

The volume of new issue reports, however, was over-
whelming and the quality was quite low: only 7% of the
new issues had stack traces with debugging information.
Simply having a stack trace is not as useful as having
actual lines of code causing the crash. Users who could
now easily report crashes, did not have enough motivation
or skill to install debugging libraries which would provide
debug symbols, thus improving the quality of the issue re-
ports. Furthermore, 95% of the issues that needed additional
information to be reproduced were closed with the resolution
of INCOMPLETE because the reporters did not respond to
requests for additional information. As one developer put it:
“The NEEDINFO status is nearly killed by these incomplete
reports.”

To address these problems, the project introduced new
technology and evolved practices. To address the is-
sue of missing line numbers Gnome introduced Google
Airbag tool in Bug-Buddy v2.19. Airbag annotates cer-
tain crash reports with compiler-provided debugging in-
formation. As a result, the fraction of invalid issues
dropped down to 55% for Bug-buddy v2.19. From practice’s
perspective, Gnome community streamlined the transition
UNCONFIRMED=⇒ NEEDINFO=⇒ RESOLVED (Fig-
ure 4) to UNCONFIRMED=⇒ RESOLVED (Figure 5) in
May, 2007. Before the change, 90% reported issues were
resolved within 6.18 months (as shown in Figure 6). The
change resulted in an improvement of service quality by
reducing the delay to 1.14 months.

III. A PPROACH

Based on the qualitative study we designedPe
2 to address

two issues that vexed project participants the most: detecting
anomalies in the issue resolution practices and quantifying
the impact of specific practices.

To accomplish thatPe
2visualizes and compares vari-

ous properties of the subsets of issues that a user can

Figure 5. Workflow without NEEDINFO in the transition view

Figure 6. Issue resolution time in the process view

interactively select using a variety of visual and textual
(regular expressions) options. An overview ofPe

2 is given in
Figure 7. The basic paradigm is that of linked views, where
the same set (or sets) are displayed in a variety of ways to
allow:

1) display of trends and corresponding anomalies,
2) visual selection of subsets of interest,
3) quantification and comparison of the issue and service

quality for the selected subsets.

For example, a user can select one year before April, 2004
by brushing the mouse over relevant period in the timeline
view. After saving the state (shown in the history panel at
top-right), user can select one year after April, 2004. By
toggling between these two saved states a user can clearly
see what changed. In another scenario, a user may select
issues that were resolved and then reopened using a simple
regular expression “S*[UE]” where S is an abbreviation for
resolved, U for unconfirmed, and E for NEW.

IV. V IEWS AND SELECTORS

Each view ofPe
2 is designed to present a particular set

of anomalies or to quantify service and issue quality and
also serve as an interactive filter that allows user to select
the subsets of interest for comparison and to quantify issue
and service quality for these subsets.

Figure 7. Overview ofPe2



A. The timeline view

The timeline view shows trends and serves as date filter.
It is represented by an area chart with date on the horizonal
axis and chosen statistics on the vertical axis. Statistics
include Birth Rate (the number of issues reported during
one month), Expiration Rate (the number of issues resolved
during the month), and Cumulative Issues (open, but not
yet resolved). The timeline view shows two subsets of the
selected issue population. The part shown in darker color
represents the entire selection while the lighter color shows
one part of the selection, for example, issues that are reported
as “NEW”. In addition, the fraction of issues representing
the lighter color is drawn as a black line.

B. The transition view

The transition view shows frequencies and delays between
the states the issues pass through. Circles show states and
arcs transitions, with the thickness of the arc indicating one
of the following statistics for the selected set: the numberof
issues having that transitions, the total delay incurred for that
transition, and the average delay incurred for that transition.
The arcs above the circles go left to right while the ones
below circles go right to left.

As noted above, the transition view is linked with the
timeline (and other) view(s). In particular, moving the time
range in the timeline view shows the animation of the
evolution of the transitions among states.
C. The process view

The process view is designed to quantify service quality.
It provides details of the delay for each transition. The
horizontal axis shows delay and the vertical axis shows the
numbers of issues. Each state is drawn in single color with
the width representing average time and the high the number
of issues. The area of each state shows the total time spent
transiting between two states in all selected issues. Time
zero represents the time an issue is created and the time at
which next colored region starts indicates delay between the
time the issue was created and the next state.
D. The selectors

The transition filter provides visual and textual methods
to select subsets of issues that went through chosen state
transitions.

The resolution and completeness filters (shown in the top-
left of Figure 7) display the number (and fraction) of issues
with each resolution and level of completeness in the the
current subset. A user may also expand or narrow the current
subset of issues by adding (removing) resolutions or levels
of completeness to (from) the current subset.

V. RELATED WORK

There has been substantial amount of work on developing
tools to investigate software repositories in order to improve
software production. For example, Expertise Browser [2]

presents the relationships between developers and source
code they change to help determine experts for the code
and develop expertise profiles, Hipikat [3] provides access
to the group memory that is implicitly formed by all of the
artifacts produced during the development for a software
project, and Ariadne [4] as a plug-in for Eclipse offers
developers visualizations of the source code authorship and
the potential presence of coordination problems. More re-
cently, Codebook [5] tries to discover transitive relationships
between people, code, bugs, test cases, specifications, and
related artifacts by mining all kinds of software repositories,
and Lungu et al. [6] visualize the evolution of software eco-
systems.

However, the evolution of project practices through issue
tracking have been neither investigated, nor quantified. In
this study, we visualize the anomalies of issue tracking
practices and quantify the relevant effects. We hope to help
developers understand the impact of their practices and to
design practices.

VI. CONCLUSION

We introduced a visualization tool to detect anomalies
in the issue resolution process and to quantify the service
quality and issue quality.Pe

2makes it easy to quantify the
impact of various practices and, thus, may help reduce time
wasted by developers on invalid issues and improve service
quality by responding to user issues more rapidly.

We are working on applyingPe
2 in both commercial

and open source projects to help discover and remove
inefficiencies in issue resolution practices.

REFERENCES

[1] A. Mockus, R. T. Fielding, and J. Herbsleb, “Two case studies
of open source software development: Apache and Mozilla,”
ACM Transactions on Software Engineering and Methodology,
vol. 11, no. 3, pp. 1–38, July 2002.

[2] A. Mockus and J. Herbsleb, “Expertise browser: A quantitative
approach to identifying expertise,” inICSE 2002. Orlando,
Florida: ACM Press, May 19-25 2002, pp. 503–512.

[3] D. Cubranic and G. Murphy, “Hipikat: A project memory for
software development,”TSE, vol. 31, no. 6, 2005.

[4] C. R. de Souza, S. Quirk, E. Trainer, and D. F. Redmiles,
“Supporting collaborative software development through the
visualization of socio-technical dependencies,” inGROUP
2007. New York, NY, USA: ACM, 2007, pp. 147–156.

[5] A. Begel, K. Y. Phang, and T. Zimmermann, “Codebook: Dis-
covering and exploiting relationships in software repositories,”
in ICSE 2010. New York, NY, USA: ACM, 2010, pp. 125–
134.

[6] M. Lungu, M. Lanza, T. Gı̂rba, and R. Robbes. “The Small
Project Observatory: Visualizing Software Ecosystems.” in
Science of Computer Programming, Elsevier 75(4) p. 264275,
April 2010.


