Risky Files: An Approach to Focus Quality Improvement Effort

Audris Mockus

Randy Hackbarth John Palframan

Avaya Labs Research 211 Mt Airy Rd Basking Ridge, NJ 07920 audris@avaya.com

Aug 21, 2013

Motivation

Make *quality* of the code *transparent*

Indications

- Development transferred
- Few original authors remain
- ► A long development history
- Many customers/customer issues
- A component of many projects

Motivation

Make *quality* of the code *transparent*

Indications

- Development transferred
- Few original authors remain
- A long development history
- Many customers/customer issues
- ▶ A component of many projects

Motivation

Make *quality* of the code *transparent*

Indications

- Development transferred
- ► Few original authors remain
- ► A long development history
- Many customers/customer issues
- ▶ A component of many projects

Benefits

Top 1% of all files contribute to 60+% of field defects

Make Transparent

- Where to rebuild lost expertise
- ▶ Where to focus quality improvement

Provide guidance for

- Cost effective actions
- Practices to reduce future defects

Approach Outline

- Data processing
 - Accessing data sources
 - Linking data sources
 - Obtaining risk predictors
- Prioritized candidate list
 - Details needed for action
 - Related files
 - Modification Requests (MRs)
 - Customer Reported Defects (CFDs)
 - Developer expertise
 - Determine and schedule actions
- Monitor actions and measure quality improvement

Data Sources

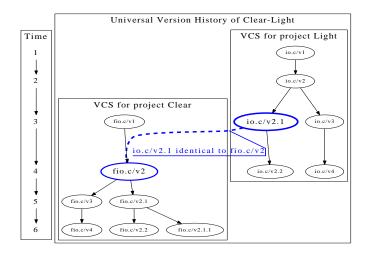
- Code changes
 - ► 1K+ projects using git/svn/ClearCase/SCCS/other VCS
 - ► 50M+ changes

Data Sources

- Code changes
 - ► 1K+ projects using git/svn/ClearCase/SCCS/other VCS
 - ► 50M+ changes
- ► MRs: Why change was made?
 - ► ClearQuest/JIRA/other: 1.6M MRs

Data Sources

- Code changes
 - ► 1K+ projects using git/svn/ClearCase/SCCS/other VCS
 - ► 50M+ changes
- ▶ MRs: Why change was made?
 - ► ClearQuest/JIRA/other: 1.6M MRs
- ► Support: which MRs came from users (CFDs)?
 - Customer support (Siebel)
- ▶ Directory: who represents that login?
 - Corporate directory
 - Yellow pages to map login to corporate handle


Linking Data

- ▶ MRs from code commit comments
- Corporate handle for commit login
- CFDs from Siebel

Linking Data

- ▶ MRs from code commit comments
- ► Corporate handle for commit login
- CFDs from Siebel
- Identify related (copied in the past) files
 - f_1 is directly related (\sim) to f_2 if $\exists v_1, v_2 : f_1(v_1) = f_2(v_2)$ where f(v) is a string representing version v of file f
 - ▶ f_1 is related to f_2 (a transitive closure of \sim) iff $\exists F_1, \ldots, F_k : f_1 \sim F_1, F_1 \sim F_2, \ldots, F_k \sim f_2$

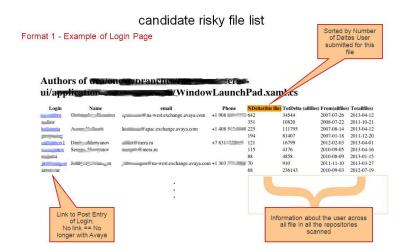
io.c \sim fio.c: directly related files

Determine risk factors most strongly associated with future customer-reported defects

Identify and prioritize files (equivalence classes)

- Risk predictors
 - ► Number of changes, CFDs
 - ▶ Number of authors, number who left
 - Size in LOC
 - Author experience
 - Number of static analysis warnings
 - % test coverage
- Risk prioritization
 - ► Fit a logistic regression model
 - Use a minimal subset to prioritize
- ► Produce top 1% risky file report

Determine risk factors most strongly associated with future customer-reported defects


Identify and prioritize files (equivalence classes)

- Risk predictors
 - Number of changes, CFDs
 - ▶ Number of authors, number who left
 - Size in LOC
 - Author experience
 - Number of static analysis warnings
 - % test coverage
- Risk prioritization
 - ► Fit a logistic regression model
 - ► Use a minimal subset to prioritize
- ► Produce top 1% risky file report

For subject matter experts (SMEs)

- In three formats
 - Hypertext, sortable by metrics, CSV
- ► Hypertext: for each file
 - Link to related files
 - Two most recent CFDs
 - Link to MRs
 - Link to authors/experience
 - ▶ Relevant metrics: LOC, coverage, . . .
- Checklist of suggested actions

Example: Risky File Author View

Expert assignment and training

- Use file authorship to determine/assign SME
- ► SME is trained how to use the report and checklist
- ► SME examines the report to:
 - ▶ Determine action for each risky file
 - Schedule the action

SME Recommendations

- No action required if
 - E.g., will become unused; just changed with a risky file
- Control if
 - E.g., little active development in the future
- Control examples
 - Extra review SME+Owner, and testing for any change
 - ▶ If many authors: create a brief design/test guide
- Restructure if
 - Development in the future and the file is too fragile
- If no remaining authors: assign a file owner

Update on status

- Created candidate sets of risky files for 45 projects.
- ▶ Held training sessions with 17 of these projects
- ▶ 7 of these projects are defining actions

Discussion

- Use of Big Data
 - ► To make quality visible to multiple stakeholders
- Enable SMEs to take action
 - By (usually) justifying their intuition
 - By providing quantitative evidence for management

Discussion

- ▶ A patchwork on cutting-edge techniques
 - Data mining
 - Risk prediction
 - Expertise browser (link code and people)
 - Relationship among files in different repositories
- Feedback from early users
 - Need to show or drill-down to detail: code, MRs, people
 - Multiple forms of presentation
 - Role-specific aggregation
 - Bug in another project: DILLIC/DILLIGAD?