
Using Software Changes to Understand and
Improve Software Projects

Avaya Labs Research

Basking Ridge, NJ 07920

http://mockus.org/

Outline

✦ Background

✧ Motivation

✧ Software project repositories

✧ How to use change data

✦ Software project issues

✧ Appropriate levels of test coverage

✧ Expertise transfer and distributed development

✧ Customer-perceived quality

✦ Discussion

2 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Motivation

✦ To quantify software production: make informed trade-offs

among schedule, quality, and cost

✧ Visibility: where/when effort is spent, defects introduced

✧ Predictability: what will be the impact of choosing technology,

processes, organization

✧ Controllability: trade-offs between time to market, features, quality,

and staffing

3 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Approach

✦ Observe development through digital traces it leaves in source

code changes, problem reporting/resolution, and recorded

communications

✧ Summarize actual software development (extract existing practices,

effort, and quality)

✧ Obtain tacit knowledge of successful individuals/teams/projects

✧ Detect patters and relationships (laws) that can not be observed from

by individual participants in software projects

4 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Software changes

✦ Software is created by changes

✦ Changes are tracked

Before:

int i = n;

while(i++)

prinf(” %d”, i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(” %d”, i−−);

✦ one line deleted

✦ two lines added

✦ two lines unchanged

✦ Many other attributes: date, developer login, defect number, . . .
5 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Defect density and probability that a
customer will observe a defect?

DL

DL

DL

DL

DL

DL

0.0
00

0.0
05

0.0
10

0.0
15

Qu
an

tity F1

F1

F1
F1

F1
F1

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

DL
F1

DefPerKLOC/100
Probability 1m.

Up
Down

Down
Down

Down
Up

Up
Down

Up
Down

How to compare releases?
6 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Change Data Methodology: Extraction

✦ Get access to the systems

✦ Extract raw data

✧ change table, developer table. (SCCS: prs, cleartool -lsh, cvs log, svn

log, git log, hg log), write/modify drivers for other

CM/VCS/Directory systems

✧ Interview the tool support person (especially for home-grown tools)

✦ Do basic cleaning

✧ Eliminate administrative, automatic, post-preprocessorchanges

✧ Assess the quality of the available attributes (type, dates, logins)

✧ Eliminate un- or auto-populated attributes

✧ Eliminate remaining system generated artifacts

7 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Change Data Methodology: Validation
✦ Interview a sample of developers, testers, project manager, tech.

support

✧ Go over recent change(s) the person was involved with

✧ to illustrate the actual process (what is the nature of the work item,

why you got it, who reviewed it)

✧ to understand/validate the meaning various attribute values: (when

was the work done, for what purpose, by whom)

✧ to gather additional data: effort spent, information exchange with

other project participants

✧ to add experimental/task specific questions

✦ Augment MR properties via relevant models: purpose [15],
effort [1], risk [17]

✦ Validate and clean recorded and modeled data

✦ Iterate
8 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Why Use Project Repositories?
✧ The data collection is non-intrusive (using only existing data minimizes

overhead)

✧ Long history of past projects enables historic comparisons, calibration,

and immediate diagnosis in emergency situations.

✧ The information is fine grained: at MR/delta level

✧ The information is complete: everything under version control is

recorded

✧ The data are uniform over time

✧ Even small projects generate large volumes of changes: small effects are

detectable.

✧ The version control system is used as a standard part of a project, so the

development project is unaffected by observer
9 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Pitfalls of Using Project Repositories

✦ Different process: how work is broken down into work items may

vary across projects

✦ Different tools: CVS, ClearCase, SCCS, svn, git, hg, bzr, ...

✦ Different ways of using the same tool: under what circumstances

the change is submitted, when the MR is created

✦ The main challenge: create change based models of key problems

in software engineering

10 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Change Data Methodology: Project Sample
✦ Languages: Java, C, SDL, C++, JavaScript, XML, ...Platforms: proprietary, unix’es,

Windows, VXWorks,Domains: embedded, high-availability, network, user interfaceSize:
from largest to small

Type Added KLines KDelta Years Developers Locations

Voice switching software 140,000 3,000 19 6,000 5

Enterprise voice switching 14,000 500 12 500 3

Multimedia call center 8,000 230 7 400 3

Wireless call processing 7,000 160 5 180 3

Web browser 6,000 300 3 100/400

OA&M system 6,000 100 5 350 3

Wireless call processing 5,000 140 3 340 5

Enterprise voice messaging 3,000 87 10 170 3

Enterprise call center 1,500 60 12 130 2

Optical network element 1,000 20 2 90 1

IP phone with WML browser 800 6 3 40 1

Web sever 200 15 3 15/300

11 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Existing Models

✦ Predicting the quality of a patch [17]

✦ Globalization: move development where the resources are:

✧ What parts of the code can be independently maintained [18]

✧ Who are the experts to contact about any section of the code [13]

✧ Mentorship and learning [11, 21]

✦ Effort: estimate MR effort and benchmark process

✧ What makes some changes hard [7, 6, 10]

✧ What processes/tools work [1, 2, 4, 14]

✧ What are OSS/Commercial process differences [12]

✦ Project models

✧ Release schedule[8, 19, 5]

✧ Release quality/availability [3, 16, 9, 20]

12 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Code coverage

✦ How much code coverage is needed?

✧ Increasing the level of coverage would decrease the defect rate.

✧ Progressively more effort is needed to increase the coverage by the

same amount for higher levels of coverage.

✦ Project

✧ New real-time call center reporting system (1M lines)

✧ Mostly in Java, uses Cobertura to report coverage

✧ Post-release defects used as a measure of quality

✧ ClearCase used for version control, ClearQuest (CQ) for problem

tracking, each checkin comment includes MR number

✧ Customer reported CQ’s (Post-SV-MRs) can be identified

13 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Increasing coverage decreases defect rate

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Coverage

R
at

io

None 0−30% 30−60% 60−80% 80+%

Post−SV−MR / MR
Post−SV−MR / NCSL * 5

14 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Increasing coverage demands exponentially
increasing effort

Predicted levels of coverage for different numbers of changes to the

test class and median Fan-Out of 7.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Effort (changes to a test−class)

pr
ed

ic
te

d
co

ve
ra

ge

15 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Code as functional knowledge: implications

✦ Developers aretransient, but the code iseverlasting

✦ Developers canonly leave a lasting impact

✧ throughchangesto the code and

✧ throughtraining developers who succeed them

✦ Traces developers leave in the code shed light on how software is

created and how developers interact

✦ What happens in a succession: when developers change, but
code stays?

16 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Context and data sources

✦ All software projects in Avaya (85 MNCSL)

✦ Version control systems

✧ Chronology: 1990 until present, varies with project

✧ Attributes: login, date, file

✦ People: organizational Directory (LDAP) snapshots

✧ Attributes: personal ID, supervisor ID, department, location, phone,

email

✧ Chronology: 2001 until present

✦ People to login maps

17 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Succession

✦ Definition: Implicit or virtual teamsare relationships among
individuals based on the affinity to the parts of the product they
are working or have worked on.

✦ Definition: Successionis a relationship between individuals
within the implicit teams reflecting the transfer of responsibilities
to maintain and enhance the product. There are various typesof
succession: here we are concerned with offshoring and referto
receiving party asfollowersand to the transferring party as
mentors.Note that, in general, followers and mentors do not need
to communicate with each other.

✧ The chronological order of engagements bymentorsandfollowers

should be reflected in the temporal order of changes

✦ How succession affects developer productivity?
18 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

The ratio of follower and mentor productivity

Estimate 95%CI

Offshoring 1

2
[0.42, 0.67]

Primary expertise 1

2
[0.40, 0.64]

Expertise breadth 1

2
[0.38, 0.64]

Large prod. 1

3
[0.21, 0.42]

Medium prod. 2

3
[0.52, 0.77]

ln(No.Followers) 1
√

No.Followers

Table 1:log(Ratio) = Offshore + Primary + Breadth + Size +

log(NFollow). 1012 mentor-follower pairs. Adj-R2 = 59.

19 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Customer and developer perceptions of
quality

✦ Development team found that defect density does not reflect

customer perception of quality in subsequent software releases

✧ What measure reflects customer perceptions of software quality?

✧ Can it be communicated in terms that are meaningful to the

development team?

✦ Context: major projects in Avaya

✦ Version control: SCCS, ClearCase, SubVersion

✦ Problem tracking: various

✦ Customer deployment and issue reporting systems

20 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Defect density and probability that a
customer will observe a defect?

DL

DL

DL

DL

DL

DL

0.0
00

0.0
05

0.0
10

0.0
15

Qu
an

tity F1

F1

F1
F1

F1
F1

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

DL
F1

DefPerKLOC/100
Probability 1m.

Up
Down

Down
Down

Down
Up

Up
Down

Up
Down

Anti-correlated?!
21 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

High defect density leads to satisfied
customers?

✦ What does any organization strive for?

22 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Stability =⇒ Predictability!

✦ The rate at which customer problems get to Tier IV is almost

constant despite highly varying deployment and failure rates

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

Nu
m

be
rs

 o
f f

ie
ld

 is
su

es
0

50
10

0
15

0

0
5

0
0

1
0

0
0

1
5

0
0

Months

D
e

p
lo

ye
d

 s
ys

te
m

s

23 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Major versus Minor releases

✦ Defect density numerator is about the same as for IQ because

✧ Major releases are deployed more slowly to fewer customers

✧ For minor releases a customer is less likely to experience a fault so

they are deployed faster and to more customers

✦ The denominator diverges because

✧ Major releases have more code changed and fewer customers

✧ Minor releases have less code and more customers

24 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Customer Quality

1.1 1.3 2.0 2.1 2.2 3.0 3.1

0−1 months after inst.
0−3 months after inst.
0−6 months after inst.

Post inst. MR rates. Current Date

0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

**

✦ Fraction of customers that report software failures withinthe first few months of
installation

✦ Does not account for proximity to launch, platform mix

✦ Significant differences marked with “*”

✦ “We live or die by this measure”
25 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

Change data =⇒ new insights

✦ Methodology

✧ Change data analysis brings new insights

✧ Results become an integral part of development practices —

continuous feedback on production changes/improvements

✦ Insights

✧ Development process view does not represent customer views

✧ A manner of succession affects productivity: start offshoring with

simpler projects, pick appropriate mentors

✧ While increasing coverage decreases defects, effort needed to

achieve very high levels may be prohibitive

✦ Measurement hints

✧ Pick the right measure for the objective — no single “quality” exists

✧ Adjust for relevant factors to avoid measuring demographics
26 Audris Mockus Using Software Changes to Understand Software Projects ISCAS, 2009

References
[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the impact of software tools: A case study of the

version editor.IEEE Transactions on Software Engineering, 28(7):625–637, July 2002.

[2] D. Atkins, A. Mockus, and H. Siy. Measuring technology effects on software change cost.Bell Labs Technical Journal, 5(2):7–18,
April–June 2000.

[3] Marcelo Cataldo, Audris Mockus, Jeffrey A. Roberts, andJames D. Herbsleb. Software dependencies, the structure ofwork
dependencies and their impact on failures.IEEE Transactions on Software Engineering, 2009.

[4] Birgit Geppert, Audris Mockus, and Frank Rößler. Refactoring for changeability: A way to go? InMetrics 2005: 11th International
Symposium on Software Metrics, Como, September 2005. IEEE CS Press.

[5] J. D. Herbsleb and A. Mockus. An empirical study of speed and communication in globally-distributed software development.IEEE
Transactions on Software Engineering, 29(6):481–494, June 2003.

[6] James Herbsleb and Audris Mockus. Formulation and preliminary test of an empirical theory of coordination in software engineering.
In 2003 International Conference on Foundations of Software Engineering, Helsinki, Finland, October 2003. ACM Press.

[7] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, andRebecca E. Grinter. An empirical study of global software development:
Distance and speed. In23nd International Conference on Software Engineering, pages 81–90, Toronto, Canada, May 12-19 2001.

[8] Audris Mockus. Analogy based prediction of work item flowin software projects: a case study. In2003 International Symposium on
Empirical Software Engineering, pages 110–119, Rome, Italy, October 2003. ACM Press.

[9] Audris Mockus. Empirical estimates of software availability of deployed systems. In2006 International Symposium on Empirical
Software Engineering, pages 222–231, Rio de Janeiro, Brazil, September 21-22 2006. ACM Press.

[10] Audris Mockus. Organizational volatility and developer productivity. InICSE Workshop on Socio-Technical Congruence, Vancouver,
Canada, May 19 2009.

[11] Audris Mockus. Succession: Measuring transfer of codeand developer productivity. In2009 International Conference on Software
Engineering, Vancouver, CA, May 12–22 2009. ACM Press.

[12] Audris Mockus, Roy T. Fielding, and James Herbsleb. Twocase studies of open source software development: Apache and mozilla.

ACM Transactions on Software Engineering and Methodology, 11(3):1–38, July 2002.

[13] Audris Mockus and James Herbsleb. Expertise browser: Aquantitative approach to identifying expertise. In2002 International

Conference on Software Engineering, pages 503–512, Orlando, Florida, May 19-25 2002. ACM Press.

[14] Audris Mockus, Nachiappan Nagappan, and T Dinh-Trong,Trung. Test coverage and post-verification defects: A multiple case study.

In International Conference on Empirical Software Engineering and Measurement, Lake Buena Vista, Florida USA, October 2009.

ACM.

[15] Audris Mockus and Lawrence G. Votta. Identifying reasons for software change using historic databases. InInternational Conference

on Software Maintenance, pages 120–130, San Jose, California, October 11-14 2000.

[16] Audris Mockus and David Weiss. Interval quality: Relating customer-perceived quality to process quality. In2008 International

Conference on Software Engineering, pages 733–740, Leipzig, Germany, May 10–18 2008. ACM Press.

[17] Audris Mockus and David M. Weiss. Predicting risk of software changes.Bell Labs Technical Journal, 5(2):169–180, April–June

2000.

[18] Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative approach.IEEE Software, 18(2):30–37, March 2001.

[19] Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predicting effort in software projects. In2003 International

Conference on Software Engineering, pages 274–284, Portland, Oregon, May 3-10 2003. ACM Press.

[20] Audris Mockus, Ping Zhang, and Paul Li. Drivers for customer perceived software quality. InICSE 2005, pages 225–233, St Louis,

Missouri, May 2005. ACM Press.

[21] Minghui Zhou, Audris Mockus, and David Weiss. Learningin offshored and legacy software projects: How product structure shapes

organization. InICSE Workshop on Socio-Technical Congruence, Vancouver, Canada, May 19 2009.

Abstract
Software systems are created and maintained by making changes to their source code. Therefore,
understanding the nature and relationships among changes and their effects on the success of
software projects is essential to improve software engineering. Using methods and tools to retrieve,
process, and model data from ubiquitous change management systems we have gained insights into
the relationships among properties of the software product, the way it is constructed, and outcomes,
including quality, effort, and interval. We illustrate howmeasures and models of changes can lead to
a better understanding of a software project. In particular, we analyze the relationship between the
test coverage and customer reported defects, the transfer of code and its impact on developer
productivity, and the divergence of developer and customerview of software quality. We find that
increases in test coverage are related to lower defect density, but reaching high levels of coverage
requires exponentially more effort. Transfer of code ownership reduces developer productivity and
in larges projects the productivity may be reduced up to three times while in offshoring up to two
times as compared to the original developers. Finally, customer perception of software quality
represented by the fraction of customers that experience and report software defects, is not related to
a simple-to-compute measure of defect density commonly used to assess the quality of a software
projects.

Bio

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org,

picture:http://mockus.org/images/small.gif

Audris Mockus conducts research of complex dynamic systems. He designs data mining methods to

summarize and augment the system evolution data, interactive visualization techniques to inspect,

present, and control the systems, and statistical models and optimization techniques to understand

the systems. Audris Mockus received B.S. and M.S. in AppliedMathematics from Moscow Institute

of Physics and Technology in 1988. In 1991 he received M.S. and in 1994 he received Ph.D. in

Statistics from Carnegie Mellon University. He works at Software Technology Research Department

of Avaya Labs. Previously he worked at Software Production Research Department of Bell Labs.

