
How to run empirical studies using project
repositories

Audris Mockus
Avaya Labs

audris@mockus.org

Avaya Labs Research

Basking Ridge, NJ 07920

http://www.research.avayalabs.com/user/audris

Objective

✦ Difficulties in software measurement based on software change

repositories

✧ Report personal work/review experiences

✧ Focus on a small subset of issues in-depth

✧ No attempt to cover all or even the most important issues

2 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Classes of Issues Discussed

✦ Irrelevant topic

✦ Overly specialized results

✦ Technical mistakes

3 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Motivation

✦ What world needs

✧ Understand and improve software practice

✧ Informed (quantitative) tradeoffs between schedule, quality, cost

✧ Understanding: where effort is spent, where defects are

introduced

✧ Acting: the impact of technologies/processes/organization

✦ Obstacles - lack of focus on software measurement

✧ Low priority except in emergencies

✧ Need for immediate results (short time horizon)

✧ Lack of resources for measurement/improvement

✧ Multiple stakeholders (developer/support/product management)

4 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Background

✦ Software is a virtual product and does not exist outside
developers’ heads and sources or binaries in conjunction with
development, maintenance, installation, configuration, and
execution tools and environments

✦ Most tools and environment involved leave traces of development
and maintenance activities in the form of event logs or state
changes

✦ Therefore, more information may be recorded when producing
software than in production of physical items

✦ Approach

✧ Use project’s repositories of change data to model (explainand

predict) phenomena in software projects and to create toolsthat

improve software productivity/quality/lead times
5 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Systems commonly used in a typical
organization

✦ Sales/Marketing: customer information, customer ratings,

customer purchase patters, customer needs: features and quality

✦ Accounting: Customer/system/software billing information and

maintenance support level

✦ Maintenance support: Currently installed system, supportlevel

✦ Field support: dispatching repair people, replacement parts

✦ Call center support: customer call/problem tracking

✦ Development field support: software related customer problem

tracking, installed patch tracking

✦ Development: feature and development, testing, and field defect

tracking,software changeand software build tracking
6 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Advantages of project repositories

✧ The data collection is non-intrusive (using only existing data minimizes

overhead).Requires in-depth understanding of project’s development

process

✧ Long history on past projects enables historic comparisons, calibration,

and immediate diagnosis in emergency situations.It takes time and

effort to get to that point.

✧ The information is fine grained, at the MR/delta level.Links to higher

level (more sensible) attributes like features and releases is often

tenuous.

✧ The information is complete, everything under version control is

recorded. Except for fields, often essential, that are inconsistentlyor

rarely filled in.

7 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Advantages of project repositories

✧ The data are uniform over time.That does not imply that the process

was constant over entire period.

✧ Even small projects generate large volumes of changes making it

possible to detect even small effects statistically.As long as the relevant

quantities are extractable.

✧ The version control system is used as a standard part of the project, so

the development project is unaffected by experimenter intrusion. It is no

longer true when the such data is used widely in organizational

measurement.

8 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Irrelevant topic

✦ Model things that are easy to measure

✧ Counts, trends, patterns

✦ Explore topics that are well formulated but of limited value

✧ Which modules will get defects

✦ Overly fundamental laws

✧ Power law distribution

9 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Trends

✦ Number of changes and average lines added, deleted, and unchanged per

modification over 12 year period. Each bar represents the underlying

number

✦ Largest churn (added and deleted lines) can be observed early on and in

1992

✦ Average file size reaching peaks in 1993 and then decreasing somewhat

10 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Patterns - Developer changes over 24 hours

Code submissions over 16 years

Star icon encodes the number of changes during one hour for a developer as distances

from “star” center dot starting at midnight (top) and continuing clock-wise as a 24 hour

clock (noon pointing down).

Developers are arranged according to similarity of these patterns.

a) Some have very regular pattern of checkins

from 8AM (120 degrees) to 11AM (165 de-

grees)

b) Some work all day, have dinner break and

check in before midnight (pan handle at the

top)

c) Some never check in during the day (pie cut

between 10AM and 5PM)

11 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Software Releases

✦ Releases are the primary objects of interest requiring planning,

design, implementation, and maintenance

✦ Unfortunately they are not always easy to associate with software

changes or problem reports

12 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Release Terminology

✧ Generic or base often refers to a major release and minor releases that

are following it to fix problems and complete features. Version control

files may be copied from a previous generic or a top level branch created.

Many OSS projects simply have a development branch and maintenance

branches for supported releases

✧ Load is an executable load of the product produced in development or

later phases. Usually denoted via several numbers, e.g., 10.3.5.142

✧ Patch is a specialized load for an individual customer or a load

supplanting a release

✧ Release is a load (most often several loads) that are delivered to

customers under a single release name, e.g., r11.1, or r13.0.1

13 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Identifying releases

✦ Generic is often used to track problems. Each problem may be

open, assigned, and resolved separately for each generic itmay

affect. Problem tracking systems that do not treat problemsfor

each generic separately tend to have unusual resolution times for

problems affecting several releases.

✦ Release and date reported identify the release and time whenthe

problem was discovered. They are necessary to use when

measuring the quality characteristics of a release. Sometimes date

reported is referred to as the origination date

14 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Identifying releases — II

✦ Release resolved identifies the release in which the problem

resolution was implemented. Often, load number is also

available. A problem (especially discovered in a maintenance

branch) is often resolved in several releases, often at widely

different times and sometimes by different developers. It is

necessary to identify the effort spent by developer and effort

related to a particular release

✦ Date submitted indicates time when a resolution was provided

(different for each release involved). If the resolution is

“nochange” or “deferred”, dates for nochange or deferral

decisions should be used instead

15 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Phase detected

✦ Important for quality assessment

✦ Can be identified by development and maintenance branches in OSS

✦ The values may not be readily available - use other sources, i.e. field

tracking systems

2001.0 2001.5 2002.0 2002.5

0
10

20
30

40
50

Calendar Weeks

W
ee

kl
y

ef
fo

rt
 (

P
er

so
n

W
ee

ks
)

New effort
Actual Repair Effort
Predicted Repair Effort (Jan, 2001)
Predicted Repair Effort (Nov, 2001)

2002.5 2003.0 2003.5 2004.0

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Time

M
R

s

July 15, 2003

Old project inflow
Old project outflow
New project inflow
New project outflow

16 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Where faults occur?

✦ Assume the best possible outcome, i.e., we can predict exactly!

✧ This can be evaluated by, for example, looking at actual occurrence

after the fact

✧ e.g., 50% of the faults occur in 20% of the modules

✧ Unfortunately, these 20% of the modules contain 60% of the code!?

17 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

order %files % faults % lines % changes

most faults 10 47 14 20

19 63 25 29

density (per line) 10 32 7 12

19 59 17 27

density (per change) 10 41 10 13

19 54 21 20

Table 1: Fraction of field faults in frequently changed modules

18 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Some models of software changes

✦ Predicting the quality of a patch [13]

✦ Work coordination:

✧ What parts of the code can be independently maintained [14]

✧ Who are the experts to contact about any section of the code [12]

✧ How to measure organizational dependencies [6]

✦ Effort: estimate interval and benchmark process

✧ What makes some changes hard and long [7]

✧ What processes/tools work and why [1, 2, 5]

✧ How do you create a hybrid OSS/Commercial process [11, 4]

✦ Project models

✧ Plan for field problem repair after the release [15, 16]

✧ Release readiness criteria [9]

✧ Quality: model of customer experience [10, 16]
19 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Some development support tools

✦ Finding relevant people [12]

✦ Finding related defects [3]

✦ Finding related changes [17, 18, 8]

✦ Finding independently maintainable pieces of code [14]

20 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Identifying Real Problems

✦ Ask two question:

✧ Suppose the questions I am posing can be answered beyond the

wildest optimistic projections - what difference will it make?

✧ Suppose I will get some handle on these questions - what difference

will it make?

21 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Audience that is too narrow

✦ “Simulating the process of simulating the process”

✦ Similarly the tools that support software project data analysis

22 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

SoftChange

✦ http://sourceforge.net/projects/sourcechange

✦ The SoftChange project will create software to summarize andanalyze

software changes in CVS repositories and defect tracking systems

✦ Requirements

✧ retrieve the raw data from the web or the underlying system via

archive downloads, CVS logs, and processing Bugzilla web pages;

✧ verify completeness and validity of different change records by

cross-matching changes from CVS mail, CVS log, and ChangeLog

files; matching changes to PR reports and identities of contributors;

✧ construct meaningful measures that can be used to assess various

aspects of open source projects.

✦ Road map at:

http://sourceforge.net/docman/display_doc.php?docid=15813&group_id=58432P

23 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Gross Errors

✦ Lack of validation

✧ Limited understanding of the process

✧ Insufficient data cleaning

✧ Eliminating missing/default/auto values

✧ Predictors and responses

24 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Missing data

✦ MCAR — missing completely at random: never happens

✦ MAR — missing at random: missingness is random conditional

on non-missing values

✦ Other — missingness depends on the value itself: most common

25 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Example

✦ Two projects are compared

✧ First has 30% of the cases where the attribute is missing

✧ Second has 60% of the cases where the attribute is missing

✧ Comparison is performed by doing a two-sample t-test on the

attributes that are not missing

✦ Potential problem - the value of the response is likely to depend

on whether or not the attribute is missing, i.e., extreme values of

an attribute make it more likely to be missing and affect the

response

26 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Example: “the right way”

✦ Sample cases with missing attributes and interview relevant

people to determine:

✧ Do actual values for missing cases differ from values for

non-missing cases

✧ Is the difference the same for both projects

✧ Can the difference be explained by other non-missing/default values

✦ If there is no possibility for validation assess the impact of

non-random missingness

✦ And: don’t forget to take logs before doing non-rank based tests

27 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

What is the problem with this data?

Priority project A Projet B Project C

1 10 62

2 201 1642 16

3 3233 9920 659

4 384 344 1

28 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Model of MR interval

✦ Current MR backlog for a project and developer may affect the

time it takes to resolve current MR as developers may have to

spread their time among such MRs

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.16 0.19 27.82 0.00

log(Dev. backlog) 0.46 0.04 12.84 0.00

log(Proj. backlog) 0.73 0.04 17.73 0.00

many 3.72 0.08 45.54 0.00

log(Lines) 0.03 0.01 2.00 0.05

Table 2: Regression of interval, adj-R2
=0.57

29 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.23 0.19 27.96 0.00

log(Dev. backlog + 1) 0.41 0.04 11.39 0.00

log(Proj. backlog + 1) 0.64 0.04 16.67 0.00

many 3.97 0.08 52.87 0.00

log(Lines + 1) 0.04 0.01 3.02 0.00

Table 3: Regression of model-generated interval, adj-R
2

=0.61.

Model used to generate the data involves only developers andlines

and no backlog.

30 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Methodology: Main Principles

Main focus on supporting the 9[5-9]% of the work related to

extraction/cleaning/validation

✦ Use levels and pipes, a la satellite image processing

✦ Validation tools (regression, interactive) for each level/transition

✧ Traceability to sources from each level

✧ Multiple operationalizations within/across levels

✧ Comparison against invariants

✧ Detecting default values

✧ Handling missing values

31 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Project Data: Levels [0-2]

✦ Level 0 — actual project. Learn about the project, access its

systems

✦ Level 1 — Extract raw data

✧ change table, developer table (SCCS: prs, ClearCase: cleartool-lsh,

CVS:cvs log), write/modify drivers for other CM/VCS/Directory

systems

✧ Interview the tool support person (especially for home-grown tools)

✦ Level 2 — Do basic cleaning

✧ Eliminate administrative and automatic artifacts

✧ Eliminate post-preprocessor artifacts

32 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Project Data: Validation

✦ Learn the real process

✧ Interview key people: architect, developer, tester, field support,

project manager

✧ Go over recent change(s) the person was involved with

✧ to illustrate the actual process (What is the nature of this work

item, why/where it come to you, who (if any) reviewed it, ...)

✧ to understand what the various field values mean: (When was

the work done in relation to recorded fields, ...)

✧ to ask additional questions: effort spent, information exchange

with other project participants, ...

✧ to add experimental questions

✧ Apply relevant models

✧ Validate and clean recorded and modeled data

✧ Iterate
33 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Serious Issues with the Approach

✦ Data cleaning and validation takes at least 95% effort - analysis

only 1 to 5 percent

✦ It is very tempting to model easy-to-obtain yet irrelevant

measures

✦ Need to understand implications of missing data

✦ Using such data will change developer behavior and, therefore,

the meaning such data may have

34 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Pitfalls of using project repositories

✦ A lot of work — try something simpler first

✦ Easy to study irrelevant phenomena or tool generated artifacts

✦ Different process: how work is broken down into work items

✦ Different tools: CVS, ClearCase, SCCS, ...

✦ Different ways of using the same tool: under what circumstances

the change is submitted, when the MR is created

✦ The main challenge: create models of key problems in software

engineering based on repository data

✧ Easy to compute a lot of irrelevant numbers

✧ Interesting phenomena are often not captured even in software

project data

35 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Discussion

✦ A vast amount of untapped resources for empirical work

✦ The usage of VCS/CM is rapidly increasing over time (startups

than do not use them are rapidly disappearing)

✦ Immediate simple applications in project management: MR

inflow/outflow

✦ It is already being used in more advanced projects

✦ Remaining challenges

✧ Build and validate models to address all problems of

practical/theoretical significance

✧ What information developers would easily and accurately enter?

✧ What is the “sufficient statistic” for a software change?

36 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Abstract

Over the last few years software project support tool repositories are

increasingly being used for empirical studies of software.This has

been primarily driven by the interest in open source projects and the

wide availability of their repositories. Unfortunately, the project

support tools are not designed as data sources for empiricalstudies

and, therefore, many pitfalls and problems await. This mini-tutorial

will discuss and illustrate some of the common things to avoid when

analyzing software repositories. The topics range from thehigh level

objectives of empirical study having an irrelevant topic ora too

narrow audience to common mistakes related to the impact of

systematically missing, default, or tool-generated data.

37 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

.References
[1] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version control data to evaluate the

impact of software tools: A case study of the version editor.IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[2] D. Atkins, A. Mockus, and H. Siy. Measuring technology effects on software change cost.
Bell Labs Technical Journal, 5(2):7–18, April–June 2000.

[3] D. Cubranic and G.C Murphy. Hipikat: A project memory forsoftware development.TSE,
31(6), 2005.

[4] T Dinh-Trong and Bieman J.M. Open source software development: A case study of freebsd.
IEEE Transactions of Software Engineering, 31(6), 2005.

[5] Birgit Geppert, Audris Mockus, and Frank Rößler. Refactoring for changeability: A way to
go? InMetrics 2005: 11th International Symposium on Software Metrics, Como, September
2005. IEEE CS Press.

[6] James Herbsleb and Audris Mockus. Formulation and preliminary test of an empirical theory
of coordination in software engineering. In2003 International Conference on Foundations of
Software Engineering, Helsinki, Finland, October 2003. ACM Press.

[7] James D. Herbsleb, Audris Mockus, Thomas A. Finholt, andRebecca E. Grinter. An
empirical study of global software development: Distance and speed. In23nd International
Conference on Software Engineering, pages 81–90, Toronto, Canada, May 12-19 2001.

38 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

[8] Miryung Kim and David Notkin. Using a clone genealogy extractor for understanding and
supporting evolution of code clones. InInternational Workshop on Mining Software
Repositories, 2005.

[9] Audris Mockus. Analogy based prediction of work item flowin software projects: a case
study. In2003 International Symposium on Empirical Software Engineering, pages 110–119,
Rome, Italy, October 2003. ACM Press.

[10] Audris Mockus. Empirical estimates of software availability of deployed systems. In2006
International Symposium on Empirical Software Engineering, page to appear, Rio de Janeiro,
Brazil, September 21-22 2006. ACM Press.

[11] Audris Mockus, Roy T. Fielding, and James Herbsleb. Twocase studies of open source
software development: Apache and mozilla.ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[12] Audris Mockus and James Herbsleb. Expertise browser: Aquantitative approach to
identifying expertise. In2002 International Conference on Software Engineering, pages
503–512, Orlando, Florida, May 19-25 2002. ACM Press.

[13] Audris Mockus and David M. Weiss. Predicting risk of software changes.Bell Labs Technical
Journal, 5(2):169–180, April–June 2000.

[14] Audris Mockus and David M. Weiss. Globalization by chunking: a quantitative approach.
IEEE Software, 18(2):30–37, March 2001.

[15] Audris Mockus, David M. Weiss, and Ping Zhang. Understanding and predicting effort in
39 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

software projects. In2003 International Conference on Software Engineering, pages 274–284,
Portland, Oregon, May 3-10 2003. ACM Press.

[16] Audris Mockus, Ping Zhang, and Paul Li. Drivers for customer perceived software quality. In
ICSE 2005, St Louis, Missouri, May 2005. ACM Press.

[17] Annie Ying, Gail Murphy, Raymond Ng, and Mark Chu-Carroll. Predicting source code
changes by mining change history.IEEE Transactions of Software Engineering, 30(9), 2004.

[18] Thomas Zimmermann, Peter Weissgerberv, Stephan Diehl, and Andreas Zeller. Mining
version histories to guide software changes.IEEE Transactions of Software Engineering,
30(9), 2004.

40 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

Bio
Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mockus.org, mailto:audris@mockus.org,

picture:http://mockus.org/images/small.gif

Audris Mockus conducts research of complex dynamic systems. He designs data mining methods to

summarize and augment the system evolution data, interactive visualization techniques to inspect,

present, and control the systems, and statistical models and optimization techniques to understand

the systems. Audris Mockus received B.S. and M.S. in AppliedMathematics from Moscow Institute

of Physics and Technology in 1988. In 1991 he received M.S. and in 1994 he received Ph.D. in

Statistics from Carnegie Mellon University. He works at Software Technology Research Department

of Avaya Labs. Previously he worked at Software Production Research Department of Bell Labs.

41 September, 2006 A. Mockus IASESE 2006, Rio de Janeiro

