
CARNEGIE MELLON UNIVERSITY

PREDICTING A SPACE-TIME PROCESS

FROM AGGREGATE DATA

EXEMPLIFIED BY THE ANIMATION OF MUMPS DISEASE

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

in

STATISTICS

By

Audris Mockus

Department of Statistics

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

November 2004



Preface

This work, as everyting else in our universe, is an aparrent result of “ripples” or microscopic non-

uniformities in the matter immediately following the Big Bang. To follow the spatial-chrolological

chain of events and causal effects more closely lets consider few time-space moments (the choice

and description are subjective).

1. The Big Bang at time 0, location(0, 0, 0) (approximately14 to 20 ×109 years ago). A

quantum fluctation produced an object with the mass of the whole universe in a single point.

2. Time: 11.7 billion years ago (approximately2.3 to 8.3 ×109 years). Location: Milky Way

Galaxy. Event: Milky Way Galaxy Formed.

3. Time: 4.6 billion years ago (approximately9.4 to 15.4 ×109 years). Location: Solar System.

Event: Solar System Formed.

4. Time: 600 million years ago (approximately14 to 20 ×109 years). Location: Earth. Event:

abundance of life forms that left mark as first fossils.

5. Time: around 1.7 million years ago (approximately14 to 20 ×109 years). Location: Earth.

Event: Pleistocene Epoch began. This minute part of geologic time is sometimes called The

Age of Man.

6. Time: 10,000 years ago. Location: North and South America. Event: First indirect record

of enviromental disasters caused by humans; simultaneous advent of the Neolithic hunting

tribes and demise of many Pleistocene mammals.

7. Time: Now. (approximately14 to 20 ×109 years), location: Here. Event: nothing too impor-

tant happening.
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Given that the the most distant visible galaxies are more than9× 1022 miles away, the last four

events on the list happened almost at the same location in space and almost simultaneously in time.

The vast size and great age of the universe suggest that events taking place on earth during

human history are very specific to the location and the time moment. The desire of science to be

general is thue crippled by this narrow window of observations in space-time. Human nature tried

to counter those problems by putting itself into the center of the universe via ego-, geo-, and helio-

centric theories.

Realizing the insignificance of planet Earth and everything associated with it (including human-

ity) I join the common effort to expand the knowledge with a tiny contribution and with the big hope

of it being useful somwhere else in the great vastness of space-time.
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Chapter 1

Introduction

The current understanding of the world comes from the space-time observations of various phe-

nomena (which are, of course, explained by models of varying complexity, e.g., Kepler’s laws,

Newton’s laws, Murphy’s laws, etc.). The phenomena may be expressed as a function (possibly a

finite or infinite-dimensional vector function) over the space-time. The observations of that function

are taken at some points in space-time and then the function is determined given those observations.

In many cases the observations can not be physically taken at the points in space-time, but rather

are gathered as averages over small (or not-so-small regions).

This thesis is concerned about ways to determine the underlying function (model) when the

observations are integrals or averages over some regions in space-time (or just in space). A partic-

ularly challenging problem is when the regions are of irregular form (not simple geometric objects

like spheres, cylinders, or boxes). Those types of regions are most common in applications when the

data is gathered for administrative, political, geographic, or agricultural regions. A list of examples

includes:

• the yearly per capita income by county;

• the weekly number of cases of a reportable disease by state;

• the number of trees by forest subdivision;

• the amount of crop by field.

In each case one can imagine that the quantity of interest could be well-modeled by a smoothly

varying function of time and space. The reported data is simply the average value of the function

(with respect to some measure) over a region in space-time. In order to estimate (predict) the value

1



CHAPTER 1. INTRODUCTION 2

of this function one should know the dependence structure of the underlying stochastic process. The

existence and form of spatial-temporal dependencies is also an important question. In Chapter 2

we propose a method to estimate the covariance function (or variogram) from the integrals of a

stationary stochastic process. The method poses the problem as a set of integral equations which

are then solved via least squares. To solve the equations efficiently in the case of an isotropic

covariance function in two dimensions we obtain a closed form expression for the kernel functions

(the functions that are convolved with the covariance function in the integral equations) in Chapter 3.

We discuss two approaches to predict a space-time process given its integrals; a simple-to-

implement kernel type method and a statistically-motivated best linear unbiased predictor (BLUP

or kriging) method. The latter method requires the knowledge of the trend and the covariance

function of the process. Chapter 4 describes both kernel and kriging type methods for prediction of

a space-time process given its integrals.

Having a predicted surface in space-time we discuss ways to present it in the form of an anima-

tion, i.e., as a set of images shown in a rapid sequence. This type of visualization is a natural way

to present a space-time process, because it has both space (location on the screen) and time (image

number) components.

Finally we apply the above methods to visualize data on mumps disease in the United States.

Here we consider an animation of a function of three dimensions; two dimensions are represented

by space and the remaining one by time. Although showing a set of images in a rapid sequence

(the animation) is not a new concept, the use of this method is new in statistics and, in particular, in

epidemiology.

With this we finish the cycle from the real-world problem of aggregate data, to the theoretical

investigations, and then back to the reality of the mumps dataset.

The following sections describe the work in greater detail. First we consider estimation of a

covariance function given integrals of a stochastic process. The estimation requires an efficient way

to compute some kernel functions and this is the topic of the next chapter. Using an estimate of the

covariance function we can perform best linear unbiased prediction (BLUP) from the integrals of

our stochastic process. We also describe an alternative kernel smoothing type prediction method.

Finally, we apply the methodology to visualize the mumps data in the United States.
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1.1 Estimating a Covariance Function from Integrals of a Stochastic

Process

Consider integralszi =
∫
Ai
f(x)dx over setsAi ⊂ A ⊂ Rd of a zero-mean stationary processf .

In Chapter 2 we are interested in the covariance functionγ(x1 − x2) of the processf (the

estimate will be used to predict the processf in Chapter 4). The estimate ofγ can be obtained

by solving appropriate integral equations. The following example shows how the estimation of

covariance function can be formulated in terms of the solution to integral equations.

Example 1: Let d = 1,A1 = [−1, 0], A2 = [0, 1]. Let f(x) be a zero mean stationary

process on[−1, 1] with the symmetric covariance functionγ(l) = γ(−l) andz1 =∫
A1
f(x)dx, z2 =

∫
A2
f(x)dx be two observations. Then

E(zizj) = E

(∫
Ai

∫
Aj

f(u)f(v)dudv

)

=
∫
Ai

∫
Aj

γ(u, v)dudv

so that the productszizj approximate the appropriate integral of the covariance func-

tion. As the covariance function is just a function of|u− v| (γ(u, v) = γ(|u− v|)) we

can simplify the integral even further. Takei = 1, j = 2, then∫
A1

∫
A2

γ(u, v)dudv =
∫ 0

−1

∫ 1

0
γ(|u− v|)dudv =

∫ ∞

0
WA1,A2(l)γ(l)dl

where the kernel function

WA1,A2(l) =


l if 0 ≤ l ≤ 1

2− l if 1 ≤ l ≤ 2

0 otherwise

We can estimate the covariance functon by trying to find a fuctionγ that satisfies the

integral equationszizj =
∫∞
0 WAi,Aj (l)γ(l)dl, i, j = 1, 2.

A general statistical perspective on solving integral equations can be found in O’Sullivan (1986).

An efficient algorithm to estimateγ is developed here for the case of an isotropic covariance function

(isotropic means thatγ(x1−x2) is a function of only‖x1−x2‖), d = 2, and theAi’s being polygons.

Related work on the estimation of the covariance function from point observations can be found in,
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e.g., Delfner (1976), Kitanidis (1983), Cressie (1985), Marshall and Mardia (1985). Surprisingly,

the estimation of the covariance function from integral observations has not been investigated.

The assumption of stationarity off(x) could be replaced by the existence of the variogram.

Definition 1.1.1 Let f(x) be a stochastic process such that the quantityv(t) = E((f(x) − f(x +

t))2) is finite and does not depend onx. Then the functionv(t) is called the variogram of the process

f(x).

The variogram could be estimated using equations similar to those derived for the covariance

function (see Appendix A.1).

1.2 Deriving the Kernel W

In Chapter 3 we present an algorithm to compute a quantity (see Example 1)

WAB(l) =
∫
u∈A,v∈B,‖u−v‖=l

dudv (1.1)

for any two finite regionsA andB in R2 with a piecewise linear boundary.

The kernelWAB is needed to estimate the covariance function from the integrals of a stochastic

process over the setsA andB (Chapter 2). The covariance function, in its own turn, will be used in

prediction of the values of the process (Chapter 4). The kernelsW may also be used to generate a

random sample of integrals of a stochastic process with any specified isotropic covariance function.

Informally, the kernelWAB is the amount of the movements of a rigid stick so that one end

of the stick remains in the regionA while the other end remains in the regionB. This analogy is

suggested the usage of integral geometry framework in Chapter 3 (see, e.g., Bonnesen and Frenchel

(1987), Gr̈unbaum (1967), Santalo (1976), Appendix A.2).

The important property of the problem is the shape of the integration regions. The solution is

given for the polygonal regions and the idea is to express the integrals over the regions by way of

the integrals over the boundary (see Theorem 3.5.4).

1.3 Prediction From Aggregate Quantities

In Chapter 4 we are interested in determining a functionf(x) given its integralszi =
∫
Ai
f(x)dx for

the purpose of animation (see, e.g, Eddy and Mockus (1993a), (1993b)), whereAi’s partition a finite

setA ⊂ Rd. Modeling the function as a stochastic process and having an estimate of the dependence
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structure of the process (see Chapter 2) we can perform the best linear unbiased prediction of the

process. In Chapter 4 we review existing approaches and introduce new techniques to determine a

function given its integrals.

The determination of a functionf given several of its functionalsgi(f) is a well studied problem

in applied mathematics and statistics. It is called an ill-posed inverse problem. It is an ill-posed

problem because there usually are several solutions to the problem unless we severely restrict the

space of desired solutions. It is an inverse problem because we have to reconstruct the function from

the values of some functionals. For a statistical perspective on solving an ill-posed inverse problem

see O’Sullivan (1986).

The most common variation of this problem is when the functionalsgi are values of the function

f at pointsxi, i.e.,gi(f) = f(xi). In the statistical approach to the same problem the functionf is

random and/or the observations include a random error. There are several distinct, well-investigated,

ways to determine the functionf . Let the functionf be nonrandom and the observationsgi(f) =

f(xi) + ε, whereε is a random error. Then we can estimatef̂(x) that best fits the data and has

additional desired properties. Depending on the fitting criteria and on the desired properties of the

fitted function we may end up with various kernel type methods, orthogonal function series methods,

or spline methods. If the functionf is assumed to be random and observations aregi(f) = f(xi)

then the standard approach is to use one of best linear prediction (or kriging) methods (see, e.g.

Cressie (1991)). A comparison between Kriging and spline prediction from point observations in

the one-dimensional case can be found in Laslett (1994). The conclusions are that the general

cross validation splines (see, e.g., Whaba (1990)) in most cases tend to oversmooth increasing

mean squared error. Kriging from meteorological point observations in space-time is described in

Handcock and Wallis (1994).

When the observation functionalsgi are integrals of the functionf , i.e.,

gi(f) =
∫
Ki(x)f(x)dx

whereKi(x) are known functions, we have to solve those integral equations to determine the func-

tion f . This problem is also well investigated and most of the above mentioned methods (except the

kernel methods) were widely used to solve it.

A kernel type smoothing method is described in Eddy and Mockus (1994). A similar problem of

estimating population density was considered by Tobler (1979). That paper contains a bibliography

from the field of applied geography. The interpolation proposed by Tobler is a numeric solution

of a Dirichlet’s equation with somewhat arbitrary boundary constraints. The method is designed to
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produce an interpolant under geographic constraints in the form of lakes, mountains, and deserts.

Unfortunately the interpolant is not simple to compute and lacks statistical justification.

We describe two interpolation methods. The simplest method to use (kernel type method) (see

Section 4.4) is similar to the kernel smoothing methods. We are not aware of anyone using kernel

methods to interpolate from aggregate data. A more sophisticated method (see Section 4.2) is based

on the assumption that the function of interest is a stochastic space-time process and we construct

a best linear unbiased predictor of such process. We will refer to this method as a kriging type

method because the best linear unbiased prediction in more than one dimension is often referred

to as kriging. While the kernel type method has little justification (except for its simplicity) it

produces results (the animation) similar to the kriging type method. The smoothing parameter of

the kernel method could be qualitatively assessed from the estimate of the covariance function.

Strong long-range correlations would imply that more smoothing is desirable, while weak long-

range correlations would imply that less smoothing is needed; the predicted surface in the later case

looks more like a step function.

1.4 Applications in Visualizing Mumps Data

Visualization of complex models or data can provide useful insights that are difficult or impossible

to detect in other ways. In Chapter 5 an animation of a function of three dimensions is considered;

two dimensions represent space and the remaining one time. Although showing a set of images in

a rapid sequence (the animation) is not a new concept, the use of this method is new in statistics

and, in particular, in epidemiology. There is a substantial amount of work trying to show a high

dimensional function on a two dimensional static display (see, for example, Tufte (1983)). Another,

more recent approach, is interactive graphics (see, for example, Cleveland and McGill (1988)). In

this case some relatively simple projections from a higher dimensional space onto a two-dimensional

display are performed and the viewer can interactively change the projection, rotating or scaling the

displayed object. An automatic change of projection, a “Grand Tour,” is another possibility (see

Asimov (1985)). All those techniques are not very useful for the large amounts of data involved in

space-time processes. In epidemiology a standard visualization technique is a static disease map.

It was first well documented by Snow for the 1748-1754 cholera epidemics in London (see, e.g.,

Cliff and Haggett (1992) pp.4-11). Any epidemic, as well as many other processes, changes both in

space and time. An animation is an improvement of the static map as it enables us to perceive the

change in time visually. Section 5.4 contains a brief discussion on how an animation is produced.
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The space-time process is estimated from data that has a particular form. In epidemiology that

data usually represent counts of the disease cases in some administrative regions and over some time

periods. To estimate the intensity of the disease one has to estimate a function from its integrals over

the mentioned administrative regions and time periods.

Small area estimation methods (see, e.g., Ghosh and Rao (1994)) could be appropriate to prepare

the data for animations of mumps for individual states or counties. The animation of the whole con-

tinental United States does not require such fine details, and, to the contrary, the mumps incidence

with spatial precision the size of a county in the considered animation (in the imaginary situation

if we had monthly incidence rates for the counties) would look highly discontinuous and would

be difficult to understand visually. The main reason is the extremely nonuniform distribution of the

population, for example,54 percent of the population live in155 most populated counties (5 percent

of the total number of counties) and the area of those most populated counties is a negligible percent

of the area of the continental US. In our animation those counties look like little specks, yet that is

where virtually all mumps cases are concentrated. To show the qualitative behavior (that could be

comprehended by viewing the animation) of the spread of mumps on the scale of the United States

we need to use substantial amount of smoothing.

A VHS videotape recorded in NTSC standard (used in the United States and Japan) that comes

with this thesis contains the animations described in Chapter 5.



Chapter 2

Estimating a covariance function given

integrals

2.1 Introduction

We have integralszi =
∫
Ai
f(x)dx over setsAi ⊂ A ⊂ Rd of a zero-mean stationary Gaussian

processf onA.

In this Chapter we are interested in the covariance functionγ(x1 − x2) of the processf (the

estimate will be used to predict the processf in Chapter 4). The estimate ofγ can be obtained by

solving appropriate integral equations (see Example 1).

The dimensionalityd of the processf(x) is important because in the case of a two-dimensional

process we provide an efficient implementation of the estimation algorithm; it is difficult to estimate

in higher dimensions for general regionsAi. In applications we are frequently interested in three-

dimensional space-time processes, but the regionsA have irregular boundary only in two spatial

dimensions (for example, borders of an administrative or political region). If the integrals are given

for spatial regions over a fixed time period those regions in three dimensions (including time) are

prisms and this particular form simplifies the estimation process.

The assumption of stationarity off could be replaced by the existence of a variogram. The

variogram could be estimated using equations similar to those derived for the covariance function

(see Appendix A.1). A rigorous treatment of generalizations of spatial processes for which the pre-

diction is possible given only one realization can be found in, e.g., Matheron (1973). Those general

processes are called Intrinsic Random Functions (IRF) and they possess an analog of a covariance

8
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function - a generalized covariance function. The variogram is a simple case of a generalized co-

variance function.

In Section 2.2 three types of integral equations are obtained: for a covariance function, for a

spectral density, and for some (to be defined later in Equation (2.5)) distribution functionG. Those

equations are then used to estimate the covariance function, the spectral density, or the functionG.

In Section 2.3 ways to solve the resulting integral equations are considered.

Section 2.3.3 considers the sufficient conditions for the asymptotic consistency of the proposed

estimator.

2.2 Estimation Problem

Let f be a stationary zero-mean Gaussian process on a setA ⊂ Rd having unknown covariance

functionγ. Let zi =
∫
Ai
f(x)dx, whereAi ⊂ A, i = 1, . . . , N . Then the vector(z1, . . . , zN ),

wherezi =
∫
Ai
f(x)dx, Ai ⊂ A, has a multivariate Normal distribution with expected value 0 and

covariance matrix

Cov(z1, . . . , zN ) =
∫
A1

∫
A1
γ(u, v)dudv · · ·

∫
A1

∫
AN

γ(u, v)dudv
...

...
...

· · · · · ·
∫
AN

∫
AN

γ(u, v)dudv

 . (2.1)

The productszizj approximate the integrals
∫
Ai

∫
Aj
γ(u − v)dudv (for a stationary process

γ(u, v) is a function of onlyu− v), andγ can be estimated by solving an inverse problem forγ:

zizj =
∫
Ai

∫
Aj

γ̂(u− v)dudv, i, j = 1, . . . , N. (2.2)

If the Ai’s are regularly spaced, the appropriatezizj could be averaged, reducing the number

of equations. In the general case, it is not clear how to reduce the total number ofN ∗ (N + 1)/2

equations.

The solution to an inverse problem is, in general, not a positive definite function, but it can be

projected onto the space of nonnegative definite functions. To perform the projection we can do a d-

dimensional Fourier transform of the estimate obtained by solving the above-stated inverse problem

(2.2) to get the function

g(s) =
∫
γ̂(u− v)T e−i(u−v)

T sd(u− v),
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wheres is an d-dimensional vector and(u− v)T s is a scalar product.

The estimateg will, in general, be negative in some regions. Takingg+ = max(g, 0) we can

perform an inverse transform

γ̃(u− v) = C

∫
g+(s)ei(u−v)

T sds,

whereC is an appropriate constant. The functionγ̃ will be nonnegative definite.

Another approach could be to expressγ as a Fourier transform ofg and then solve the inverse

problem forg. This way we will need to estimate a positive functiong instead of a positive definite

functionγ. The inverse problem is:

zizj =
∫
Ai

∫
Aj

γ(u− v)dudv

=
∫
Ai

∫
Aj

∫
g(s)ei(u−v)

T sdsdudv

=
∫
g(s)VAiAj (s)ds, (2.3)

whereVAiAj (s) =
∫
Ai

∫
Aj
ei(u−v)

T sdudv.

The solutionĝ(s) has to be a nonnegative function to ensure nonnegative definiteness of the

estimated covariance function̂γ(u− v)) = C
∫
ĝ(s)ei(u−v)sds.

For an isotropic covariance function (i.e.γ(u, v) = γ(‖u − v‖), where‖ · ‖ is Euclidean

distance) Equation (2.2) can be rewritten as:

zizj =
∫
Ai

∫
Aj

γ(u− v)dudv

=
∫ ∞

0
WAiAj (l)γ(l)dl, (2.4)

wherel = ‖u− v‖ and

WAiAj (l) =
∫
u,v:u∈Ai,v∈Aj ,‖u−v‖=l

dudv

The functionsWAiAj (l)’s are nonzero only on intervals

l ∈
(

inf
u∈Ai,v∈Aj

‖u− v‖, sup
u∈Ai,v∈Aj

‖u− v‖
)
.

The geometric problem is to obtain the weight functionWAiAj (l). The functionsWAiAj (l) are

closely related to the kinematic measureM(l, Ai, Aj) (see Appendix A.2) of all movements of an

oriented segment of lengthl such that one end of the segment is in the setAi and the other end is in
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the setAj . In Chapter 3 we obtain an efficient algorithm to calculate the kernelsWAiAj andVAiAj

when the regionsAi are inR2.

Not any positive definite function is an isotropic covariance function in more than one dimen-

sions. A general form of an isotropic correlation function can be found in, e.g., Matèrn (1986). If

a correlation functionr of a d-dimensional stationary random process is continuous at the origin

then there exists ad-dimensional random variableX which hasr as characteristic function. The

distribution function of that random variable is called the spectral distribution function of the pro-

cess. For isotropic correlation functionr(l) = E(eiu
TX) = E(eil‖X‖Y ), wheret = ‖X‖ andY is a

random variable independent of‖X‖ and uniformly distributed on a unit sphere onRd. The density

function and the characteristic function forY is

fY (y) =
(1− y2)(d−3)/2

B
(
d−1
2 , 1

2

) , −1 ≤ y ≤ 1

φY (l) =
d− 2

2
!
(

2
l

) d−2
2

J d−2
2

(l)

whereB is the Beta-distribution anJ is the Bessel function of the first kind. Taking expectation

conditional on‖X‖ and then taking expectation with respect to the distributionG of ‖X‖ we get

r(l) = G(0) +
∫ ∞

0
φY (ls)dG(s). (2.5)

hence the isotropic correlation function is a scale mixture of Bessel functions and the estimation of

such function could be done by estimating the functionG appearing Equation (2.5). Reformulating

problem (2.4) in terms of the functionG we get

zizj =
∫ ∞

0
WAiAj (l)γ(l)dl

=
∫ ∞

0
WAiAj (l)σ

(
G(0) +

∫ ∞

0
φY (ls)dG(s)

)
dl

=
∫ ∞

0
QAiAj (s)dG(s) (2.6)

whereQAiAj (s) = σ
(∫∞

0 WAiAj (l)φY (ls)dl + SAiSAjG(0)
)
, SAi is the area ofAi, andσ =

γ(0).

Several parametric correlation models for continuous stationary stochastic processes on the

plane can be found in the literature. Whittle (1954) considered a spatial AR process generated

by two-dimensional Laplace equation

∂2f(x, y)
∂x2

+
∂2f(x, y)
∂y2

− φf(x, y) = ε(x, y),
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whereφ is positive andε(x, y) is a two-dimensional white noise. Vecchia (1985) considered classes

of two-dimensional spatial processes with rational spectral density and gave computational formulas

for calculating correlations. Jones and Vecchia (1993) consider fitting spatial ARMA processes that

are solutions to stochastic differential equation:

(
∂2

∂x2
+

∂2

∂y2
− φ0

)
. . .

(
∂2

∂x2
+

∂2

∂y2
− φp

)
f(x, y) =(

∂2

∂x2
+

∂2

∂y2
− θ0

)
. . .

(
∂2

∂x2
+

∂2

∂y2
− θq

)
ε(x, y)

All those models could be estimated using the methods to solve the inverse problems (2.4) or

(2.3) as described in the next section. We will only consider isotropic covariance function so the

arguments to the covariance function or the spectral density are scalar.

2.3 Inverse Problem

In this section the integral equations (2.4), (2.3), and (2.6) are solved. As was indicated in Sec-

tion 2.2 most of the methods that solve integral equations would produce a nonpositive definite

estimate forγ (unless we are just estimating a parameter of a family of positive definite functions)

if we choose to solve Equation (2.4). The solution to Equation (2.3) needs to be nonnegative and

that is a much simpler condition than nonnegative-definiteness.

In general it may be reasonable to solve integral equations in the space domain also. The actual

methods used to solve integral equations and the basic properties of the stochastic process should

influence the decision in which domain to solve the integral equations. As an example let the process

f be nearly white noise. Then the covariance function would decrease dramatically at the origin,

complicating its estimation. The spectral density would be close to a constant function, which is an

easy function to approximate. If we consider the opposite example, when there exist long distance

positive dependencies in the processf , then the covariance function would decrease smoothly and

the spectral density would have spikes. This latter case is likely to be easier to solve in the space

domain.

Equation (2.6) is more difficult to solve than the other two equations. The advantage is that the

approximate solution would be a well defined isotropic covariance function.
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2.3.1 Parametrization

Although we are doing “nonparametric estimation”, we have to representγ andg in some finite

parametrization in order to solve the integral equations numerically. An example of the parametriza-

tion, g(s) could be a step functiong(s) =
∑M−1
p=0 gpIsp<s<sp+1 , whereI is an indicator function.

We could also choose some spline function or a function series to approximateγ andg.

Denote the parameter vectorη = (η1, . . . , ηM ). The integral equations in this parametrization

become:

zizj =
∫
Wij(l)γ(l,η)dl,

zizj =
∫
Vij(t)g(s,η)ds,

zizj =
∫
Qij(t)dG(s,η).

whereWij(l) = WAiAj (l), Vij(l) = VAiAj (l) andQij(l) = QAiAj (l).

Now we could look for the weighted least squares solution to those equations, i.e, for

η̂ = arg min
η

∑
i,j

Cij

(
zizj −

∫
Wij(l)γ(l,η)dl

)2

, (2.7)

η̂ = arg min
η

∑
i,j

Cij

(
zizj −

∫
Vij(s)g(s,η)ds

)2

, (2.8)

η̂ = arg min
η

∑
i,j

Cij

(
zizj −

∫
Qij(s)dG(s,η)

)2

. (2.9)

whereCij are weights that could be inversely proportional to the variance ofzizj . In that case

and when the areaSAi of the regionsAi gets small, theCij are proportional to
(

1
SAi

SAj

)2

. In

practice we can perform the least squares iteratively; first findη̂ usingCij =
(

1
SAi

SAj

)2

, then

setCij = 1
(
∫
Wij(l)γ(l,η)dl)2

and perform least squares again. TheCij are updated in this way until

η stops changing from iteration to iteration. In practice, having the weightsCij =
(

1
SAi

SAj

)2

(as opposed to havingCij = 1) provided more reliable convergence of the numerical optimization

methods in finding the optimal solution.

The refinement of the least squares procedures could be an MLE (Maximum Likelihood Esti-

mate). If we assume the processf to be a stationary zero mean isotropic Gaussian process with the

covariance functionγ(l,η) plus a fixed trendµ(η, u), then the vector{zi −
∫
Ai
µ(η, u)du}, i =
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1, . . . , N would be have multivariate Gaussian distribution with zero mean and the covariance func-

tion given by Equation (2.1). Maximizing the likelihood of the observations{zi} we can obtain the

optimal value ofη.

2.3.2 Step Function Approximation

Let 0 = l0 < l1 < l2 < . . . < lM−1 < lM = ∞. Let γ(l,η) =
∑M−1
i=0 ηiI[li,li+1)(l) be an

approximation to the covariance functionγ(l). LetW k
ij =

∫ lk+1

lk
Wij(l)dl. Then the least squares

solution

η̂ = arg min
η

∑
i,j

Cij

(
zizj −

∑
k

W k
ijηk

)2

(2.10)

can be obtained by solving a system ofN(N + 1)/2 linear equations withM unknowns under

constraints thatη is positive. Unfortunately, the solution will not be a positive definite function.

It will not be a reasonable covariance function because if a covariance function is continuous at

zero it is continuous everywhere (see, e.g., Cramer and Leadbetter (1967)). The piecewise constant

approximation given in Equation (2.10) should be interpreted as an approximation of the integrals

of the true covariance function, i.e.,ηk(lk+1 − lk) ≈
∫ lk+1

lk
γ(l)dl.

Splines of the first or higher order (step function is a zero order spline) could be used as an

approximation of the covariance function. The usefulness of that approach is not clear. The ap-

proximation forγ is not likely to be a positive definite function even if we use higher order splines,

while the least squares equations are likely to become more complicated.

Let 0 = s0 < s1 < s2 < . . . < sM−1 < sM = ∞. Let g(s,η) =
∑M−1
i=0 ηiI[si,si+1)(s) be

an approximation to the spectral density functiong(s). Let V k
ij =

∫ sk+1
sk

Vij(s)ds. Then the least

squares solution

η̂ = arg min
η

∑
i,j

Cij

(
zizj −

∑
k

V k
ijηk

)2

(2.11)

ηk ≥ 0, k = 1, . . . ,M − 1 (2.12)

can be obtained by solving a system ofN(N + 1)/2 linear equations withM unknowns under

constraints thatη is positive.

Let

G(s,η) =
M∑
i=0

ηiI[si,∞)(s)
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be an estimate for the mixing measureG of the scale for the Bessel functions involved in Equa-

tion (2.5). Let

γ(l,η) =
∫ ∞

0
φY (ls)dG(s,η)

=
M∑
i=1

(ηi − ηi−1)φY (lsi)

Then we could find least squares solution forη by

η̂ = arg min
η

∑
i,j

Cij

(
zizj −

∫
Wij(l)

M∑
i=1

(ηi − ηi−1)φY (lsi)dl

)2

(2.13)

or by

η̂ = arg min
η

∑
i,j

Cij

(
zizj −

M∑
i=1

Qij(si)(ηi − ηi−1)

)2

(2.14)

2.3.3 Consistency of the Step Estimators

We will consider asymptotics in terms of the size of the regionsAi getting smaller as well as the

size of the regionA getting larger. The former is to obtainγ(l) when l is small and the latter to

obtainγ(l) whenl is large. Appropriate theorems with proofs are given in Appendix A.4.

2.4 Example

To illustrate the behavior of the covariances between regions we consider a simple parametric case

with γ(t) = σeαt. The three regionsA1, A2, A3 partition a30×30 square regionA (see Figure 2.1).

In this example we expect the covarianceCov(z1, z2) to be bigger than the covarianceCov(z1, z3)

despite the fact that the regionsA2 andA3 have the same area.

Figure 2.2 shows covariances between all possible pairs of regions for different values ofα

using covariance functionγ(t) = eαt. As expected, the covarianceCov(z1, z1) is the biggest due

to the largest area ofA1. The covariancesCov(z2, z2) andCov(z3, z3) are identical because the

regionsA2 andA3 are of the same shape and size.

It is interesting to compare plots for the covariancesCov(z1, z3) and Cov(z2, z3). For the

values ofα close to zero the covarianceCov(z2, z3) is smaller than the covarianceCov(z1, z3)

because the regionA1 is larger than the regionA2 and whenα is close to zero the correlations

decrease slowly with distance, i.e., the larger distance between the regionsA1 andA3 (than between
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Figure 2.1: The three regionsA1, A2, A3

A2 andA3) does not affect the covariance too much. For the values ofα far from zero we have

Cov(z1, z3) < Cov(z2, z3) because the regionsA2 andA3 have a long common border (they are

“close”), while the regionsA1 andA3 have only one point where they meet.

The surface of the sum of squares in Equation (2.7) as a function ofσ andα are plotted in Fig-

ure 2.3 usingzizj = Cov(zi, zj), covariance functionγ(t) = e−t, and weightsCij =
(

1
SAi

SAj

)2

.

The sum of squares using exact covariances looks like a Rosenbrock function and is difficult to

minimize numerically. This kind of surface is a result of “numerically unfriendly” parametrization

of the covariance function.

The Rosenbrock function is often used to evaluate the performance of numerical optimization

algorithms an is given by following equation:

F (x, y) = 100(y − x2)2 + (1− x)2

It has banana shaped level lines.

2.5 Summary

In this chapter the problem of estimating a covariance function of a stationary isotropic process

when the available data are integrals of this process was considered. Examples of integral data
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Figure 2.2: Covariances as functions ofα

include but are not limited to:

• Reports of disease counts over administrative (political) regions.

• Reports of various kinds of census data over census regions.

• Reports on crop yield over different fields.

The estimation of the covariance function from point observations was investigated before, but

the estimation from integral observations was not. In the case of point observations the nonparamet-

ric form of the covariance function is estimated from the averages of products of observation pairs

with a fixed distance apart. When the data are integrals this approach is not applicable.

The proposed solution entails constructing a system of integral equations and then solving by

least squares. The three types of integral equations were given by Equations (2.4), (2.3), and (2.6).

The kernel functions for those integral equations are obtained in the next chapter. Equation (2.4) was

used to estimate the covariance function directly, Equation (2.3) was used to estimate the spectral

density, and Equation (2.6) was used to estimate the mixing measure for the scale family of Bessel

functions (the mixture of those Bessel functions represents the covariance function of interest).
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Figure 2.3: The surface of the sum of squares
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We proposed to solve those equations using the least squares approach (alternative, likelihood

based approach was mentioned at the end of Section 2.3.1). Estimation of a parametric form of

the covariance function (e.g.,γ(l) = σe−αl) can be performed by directly minimizing the sum of

squares with respect to the parameter (e.g.,(σ, α)).

We considered a nonparametric estimation of the covariance function (i.e., when the number

of parameters is asymptotically infinite). We considered approximating the covariance function

in Equation (2.7), the spectral density in Equation (2.8), the measureG in Equation (2.9). Sim-

ple and computable approximations for all three cases were given in Section 2.3.2. The particular

form of step function approximation for the covariance function and for the spectral density (Equa-

tions (2.10) and (2.11)) can lead to an estimator that is not necessarily a valid isotropic covariance

function inR2 (although the estimator is asymptotically consistent), while the last two estimators

given in Equations (2.13) and (2.14) always represent a valid isotropic covariance function.

A set of conditions for the consistency of the estimator (2.10) were given in Appendix A.4.

A simple example was then given to illustrate how the covariances between integrals over regions

depend on the covariance function of the underlying stochastic process.

A simple but useful additional result of this chapter is the ability to use the integral equations

in opposite direction: to obtain explicit covariances between integrals of a stochastic process when

a covariance function is known. Those covariances between integrals of the process can be used to

generate the integrals of the process directly.



Chapter 3

Geometric considerations

3.1 Introduction

In this chapter we obtain the kernelW for Equation (2.4). We present an algorithm to compute a

quantity

WAB(l) =
∫
u∈A,v∈B,‖u−v‖=l

dudv

for any two finite regionsA andB in R2 with a piecewise linear boundary. The main result of the

chapter is Theorem 3.5.4, which shows relationship between some efficiently computable kinematic

measure and the quantityWAB(l).

The kernelWAB is needed to estimate the covariance function from the integrals of a stochastic

process over the setsA andB (see Chapter 2). The covariance function, in its own turn, will be

used in prediction of the values of the process (see Chapter 4). The kernelsW may also be used to

generate a random sample of integrals of a stochastic process with any specified isotropic covariance

function.

The basic idea of obtaining the kernelW is to replace the two-dimensional double integral∫
A

∫
B
γ(u− v)dudv

with the one dimensional integral ∫ ∞

0
WAB(l)γ(l)dl,

(also, see Example 1).

Informally, the kernelWAB is the amount of the movements of a rigid stick so that one end of

the stick remains in the regionA while the other end remains in the regionB.

20
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To solve the stated problem we use the terminology and basic facts from integral geometry (see,

e.g, Appendix A.2, Santalo 1976, Bonnesen and Frenchel 1987).

The important property of the problem is the shape of the integration regions. The solution is

given for the polygonal regions and the idea is to express the integrals over the regions by way of

the integrals over the boundary (Theorem 3.5.4).

The kernelWAB(l) is related to the kinematic measureM(l, A,B) (it is proportional toM as a

function ofA,B up to a linear function ofl; for more details see Appendix A.2) of all movements

of an oriented segment of lengthl such that one end of the segment is in the setA and the other

end is in the setB. This relation leads to the investigation of the properties of the measureM .

Another measure of interest isMb, the kinematic measure of all movements of an oriented segment

of lengthl intersecting two line segments. We obtain the measureMb in a closed form and express

the measureM through the measureMb to find the kernelW (see Theorem 3.5.4).

In Sections 3.2 we introduce definitions used later in this chapter and obtain elementary prop-

erties of the measuresM andMb. In Section 3.3 a special case of the measureM when both ends

of the segment are within the same set is considered. Then, in Section 3.4, a closed form for the

elementary boundary measureMb is obtained. In Section 3.5 all results are put together to get an

easily computable expression forW .

In Section 3.6 extension of the results for general regions and for higher dimensions is consid-

ered. Then an alternative solution to the original problem is described (Section 3.7). Finally some

examples are presented.

3.2 The Kinematic Measure of a Segment with its Endpoints Within

Two Sets

To simplify the presentation we will introduce the following notation. LetM(l, A,B) be the kine-

matic measure (see Appendix A.2) of the movements of an oriented segmentK of lengthl so that

K has one end in the interior ofA and the other end in the interior ofB.

Definition 3.2.1 LetMb(l, A,B) be the kinematic measure of the movements of an oriented seg-

mentK of lengthl so thatK has nonempty intersection with setsA andB.

General kinematic measures of the movements of a fixed size oriented segmentK will be de-

noted asm(K : . . .), where. . . explicitly specify the restrictions on the possible movements.
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Proposition 3.2.2 LetCAiAj be the convex hull ofAi∪Aj ,Ai∩Aj = ∅ andM(l, Ai, Aj) be equal

to the measure of all movements of an oriented line segmentK of lengthl with one end in the setAi

and other end in the setAj .

Then

M(l, Ai, Aj) = M(l, CAiAj , CAiAj )

−M(l, CAiAj \Ai, CAiAj \Ai)

−M(l, CAiAj \Aj , CAiAj \Aj)

+M(l, CAiAj \ (Aj ∪Ai), CAiAj \ (Aj ∪Ai))

Proof:

To simplify the notation letA = Ai, B = Aj , C = CAiAj , D = C \ (B ∪ A). Using Equa-

tions (A.4) and (A.5) and biadditivity property of the double integral we get:

M(l, C, C) =
1
l
WC,C(l)

=
1
l

(WA,C(l) +WB∪D,C(l))

=
1
l

(WA,B(l) +WA,A∪D(l) +WB∪D,B∪D(l) +WB∪D,A(l))

=
1
l

(WA,B(l) +WA∪D,A∪D(l)−WD,A∪D(l) +WB∪D,B∪D(l) +WB,A(l) +WD,A(l))

=
1
l

(2WA,B(l) +WA∪D,A∪D(l) +WB∪D,B∪D(l)−WD,D(l))

= M(l, A,B) +M(l, A ∪D,A ∪D) +M(l, B ∪D,B ∪D)−M(l,D,D)

2

This proposition implies that it is sufficient to calculateM(l,X,X) (the kinematic measure of

all movements of the oriented segment of lengthl such that both ends of the segment are within

some general setX) to obtainM(l, Ai, Aj). Note that the usefulness of this proposition might be

limited as the setX = CAiAj \ (Aj ∪ Ai) can be unconnected if setsAj , Ai are not convex (see

Figure 3.1).

3.3 The Kinematic Measure of a Segment Inside a Convex Set

Given any convex setK0 of areaF0 and perimeterL0 the kinematic measure of all movements of

an oriented segmentK of lengthl such thatK ∩ K0 6= ∅ is

m(K;K ∩K0 6= ∅) = 2πF0 + 2lL0 (3.1)
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Figure 3.1:Ai,Aj , and their convex hullCAiAj

(see Santalo pp. 90). We are interested in the measure of all movements of a segment such that

K ⊂ K0 (M(l,K0,K0)). For any convex setK0 the intersection of the segmentK with the border

∂K0 can have zero, one, two, or infinitely many points, i.e.card(K ∩ ∂K0) = 0, 1, 2,∞. It is

easy to prove that for any convex setK0, m(K; card(K ∩ ∂K0) = ∞) = 0. The cases when

card(K ∩ ∂K0) = ∞ will be disregarded in the future discussion as that does not change the

measure of interest.

Proposition 3.3.1 The measureM(l,K0,K0) of all movements of an oriented segmentK such that

K is inside a convex setK0 can be written as follows:

M(l,K0,K0) = m(K;K ⊂ K0) = m(K;K ∩K0 6= ∅)−M1 −M2, (3.2)

whereM1 = m(K; card(K ∩ ∂K0) = 1),M2 = m(K; card(K ∩ ∂K0) = 2).

Proof: This equation is a consequence of the fact that if the segmentK intersects the convex

setK0 it may have zero, one, or two points in common with the border ofK0 (the case of infinitely

many points has kinematic measure zero). If it intersectsK0 and does not intersect∂K0 then it is

inside the setK0. 2

LetK0 be a convex polygon. The measureM(l,K0,K0) is obtained by Santalo (pp. 91-92) for

the particular case when the segmentK can not intersect two nonadjacent sides of the polygon, i.e.
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whenM2 = 0.

The border∂K0 of a polygon is a union ofn segmentssi with lengthsli. For eachsi,Mb(l, si, si) =

m(K;K ∩ si 6= ∅) = 4lli according to Eq. (3.1) as the area ofsi is zero and the perimeter is2li.

Hence summingm(K;K ∩ si 6= ∅) over all border segmentssi we get
∑
i 4lli = M1 + 2M2 as

K can intersect at most two border segments at a time and when it does the measure is counted for

both of them.

Proposition 3.3.2 The measureM(l,K0,K0) of all movements of a segmentK such thatK is

inside a convex setK0 of areaF0 and perimeterL0 is

M(l,K0,K0) = 2πF0 − 2lL0 +M2, (3.3)

Proof:

M(l,K0,K0) = m(K;K ∩K0 6= ∅)−M1 −M2

= 2πF0 + 2lL0 − (M1 + 2M2) +M2

= 2πF0 + 2lL0 − 4lL0 +M2

= 2πF0 − 2lL0 +M2,

The first equality is from Proposition (3.3.1), the second equality is obtained from Equation (3.1),

the third equality is is an application of Poincare’s formula (see Santalo pp. 111).2

For a convex polygonK0 with the boundary consisting of segmentssi we getM(l,K0,K0)

= 2πF0 − 2l
∑
‖si‖+M2 and the quantityM2 can be easily expressed using measureMb

M2 = m(K; card(K ∩ ∂K0) = 2)

=
1
2

∑
si 6=sj , si,sj∈∂K0

Mb(l, si, sj)

Noting that 1
2Mb(l, si, si) = 2l‖si‖, we can rewrite Equation (3.3) for the case of a convex

polygon

M(l,K0,K0) = 2πF0 +
1
2

∑
si,sj∈∂K0

(−1)δijMb(l, si, sj), (3.4)

whereδij =

 1 if i = j,

0 if i 6= j.
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Figure 3.2: Two segments forming an angleα intersected by a third one

3.4 The Kinematic Measure of a Segment Intersecting Two Other Seg-

ments

Let two segmentsOA andOB with lengthsl1 andl2 have one end (O) in common and an angle

α > 0 between them be intersected by a segmentK of length l (see Figure 3.2). The measure

Mb(l, AO,OB) = m(K;K ∩ OA 6= ∅ and K ∩ OB 6= ∅). In this section we will use shorter

notationMAO,OB = Mb(l, AO,OB). This measure for other possible positions of the segments

AB andBC (see Figure 3.3) can be obtained using the measure for the case shown in Figure 3.2.

In general case (Figure 3.3)

MAB,CD = MAB,OC +MAB,OD = MOB,OC −MOA,OC +MOB,OD −MOA,OD

Denote the rays originating at pointsO,O,A,B and going in the direction of vectors
−−→
OB,

−→
OA,

−→
OA,

−−→
OB

accordingly asR(OB), R(OA), R(A∞), R(B∞). From Figure 3.4 we get

MAO,OB = MR(OB),R(OA) −MR(OB),R(A∞) −MR(B∞),R(OA) +MR(B∞),R(A∞).

The measures on the right hand side of the equation are (for derivation see Appendix A.3):

MR(OB),R(OA) =
l2 (1 + (π − α) cot(α))

2
(3.5)
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Figure 3.3: General case of two segmentsAB andCD.

Figure 3.4:MAO,OB = MR(OB),R(OA) −MR(OB),R(A∞) −MR(B∞),R(OA) +MR(B∞),R(A∞)
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MR(B∞),R(OA) = (3.6)∫ ψ1

ψ0

sin(φ)
(
l +

l2 sin(α)
sin(−φ+ α)

)(
l sin(φ− α)

sin(α)
− l2

)
dφ

MR(B∞),R(A∞) = (3.7)∫ ψ11

ψ10

sin(φ)
(
l +

l2 sin(α)
sin(−φ+ α)

)(
l sin(φ− α)

sin(α)
− l2

)
dφ

+
∫ ψ21

ψ20

sin(φ)
(
l +

l1 sin(α)
sin(−φ+ α)

)(
l sin(φ− α)

sin(α)
− l1

)
dφ,

where

ψ0 = arcsin (l2/l sin(α)) + α

ψ1 = min(π, π − arcsin (l2/l sin(α)) + α)

ψ10 = arcsin (l2/l sin(α)) + α

ψ20 = arcsin (l1/l sin(α)) + α

ψ11 = arcsin
(
l2/
√
l21 + l22 − 2l1l2 cos(α) sin(α)

)
+ α

ψ21 = arcsin
(
l1/
√
l21 + l22 − 2l1l2 cos(α) sin(α)

)
+ α,

Formula (3.6) is valid whenl2 sin(α) < l, otherwiseMR(B∞),R(OA) = 0. Formula (3.7) is valid

whenl21+l
2
2−2l1l2 cos(α) < l2, otherwiseMR(B∞),R(A∞) = MR(B∞),R(OA) orMR(B∞),R(A∞) =

MR(OB),R(A∞).

The integrals appearing in Equations (3.6,3.7) are available in closed form, for example, Equa-

tion (3.6) is: ∫ ψ1

ψ0

sin(φ)
(
l +

l2 sin(α)
sin(−φ+ α)

)(
− l sin(−φ+ α)

sin(α)
− l2

)
dφ =

2ll2(1 + cos(φ))− l2
(

sin(φ)2

2
+ cot(α)

sin(2φ)
4

)

+
(
l22 sin(2α) + l2 cot(α)

) φ
2

+ l22 sin(α)2 ln (sin(φ− α))
∣∣∣ψ1

ψ0

(3.8)

The case of parallel segments (α = 0) has to be handled separately. Assume the situation as

shown in Figure 3.5. Given a fixed orientation ofK (it has angleφ with l1) the measure of all

non-rotational movements ofK such thatK ∩ l1 6= ∅ andK ∩ l2 6= ∅ is equal to the area of the

shaded parallelogram (see Figure 3.5). Let the distance between the segmentsl1 andl2 bed and the
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Figure 3.5: Two parallel segmentsl1, l2 intersected by the segmentK.

shift bes as shown in Figure 3.5. Then

Ml1,l2 = 2
∫ π

0
max(0, l sin(φ)− d) max(0, b− a)dφ, (3.9)

a = max(0, s− d tan(π/2− φ)),

b = min(l1, s+ l2 − d tan(π/2− φ)),

wherel, l1, l2 are lengths of the segmentsK, l1, l2.

3.5 Relation ofM and Mb for General Polygonal Sets

In this section a signed measureM∗ derived from the measureMb is introduced. Then a theorem

which gives the relationship between the measureM and the measureM∗ is stated and proved. As

the measureM∗ is directly related to the measureMb (which, in its own turn, is easily computable)

we can compute the measureM and hence the kernelsW andV .

To get a relationship between the measuresM andMb in a general case we need a couple of

definitions.

Definition 3.5.1 Let
−−→
AB,

−−→
CD be two nonzero length, oriented line segments andLAB ∩ LCD 6∈

(−−→AB∪−−→CD)\ (A∪B∪C ∪D), whereLAB, LCD are lines defined by the segments. Then
−−→
AB,

−−→
CD
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are called separated.

Definition 3.5.2 Let
−−→
AB,

−−→
CD be separated segments. Let K be an oriented segment of lengthl

intersecting
−−→
AB and

−−→
CD. Define the signed measure

M∗(l,−−→AB,−−→CD) =

sign (‖AC‖+ ‖BD‖ − ‖AD‖ − ‖BC‖)Mb(l,
−−→
AB,

−−→
CD),

whereMb is the kinematic measure of the movements of a segmentK intersecting segmentsAB

andCD.

Because the kinematic measure is defined in terms of integrals it is not difficult to show the

following:

Lemma 3.5.3M∗ is finitely biadditive on line segments, i.e.

M∗(l, A ∪ C,B) = M∗(l, A,B) +M∗(l, C,B)−M∗(l, A ∩ C,B) (3.10)

M∗(l, A,B ∪ C) = M∗(l, A,B) +M∗(l, A,C)−M∗(l, A,B ∩ C) (3.11)

for any three pairwise separated line segmentsA,B, andC.

Using biadditivity ofM∗(l, P,Q) we can extend the definition to an arbitrary pair of segments

and to an arbitrary pair of sets of segments. Given a finite set of segmentss ∈ S we can construct

a finite set of separated segmentss∗ ∈ S∗, so that∪s∈Ss = ∪s∗∈S∗s∗ where the union is taken

considering the segments as point subsets ofR2. The construction is as follows: for eachs ∈ S

draw a lineLs defined bys. Consider all intersection points between every line and each non-

parallel (to the line) segment. Those points will divide the segmentss into smaller segmentss∗. By

construction every pairs∗1, s
∗
2 is separated, as the set of lines created from the segmentss ∈ S is the

same as the set of lines from the segmentss∗ ∈ S∗.
Let a polygonal setP in R2 be any set having a boundary consisting of a finite number of

separated line segments and equal to the closure of its opening, i.e.P = P \ ∂P . LetBP be a set

of counter-clockwise oriented boundary segments~p so that for each~p ∈ BP the interior of the setP

is on left side of~p. More formally, let
−−→
AB = ~p and for anyε > 0 there existδ > 0, such that vector

A + t~p + s~o ∈ P \ ∂P , wheret ∈ (ε, 1 − ε), s ∈ (0, δ), and~o is a unit vector having angleπ/2

with ~p in counter-clockwise direction ((~v, ~o) = 0 for the scalar product (angle isπ/2 or−π/2), and

~v × ~o < 0 for the vector product in a right handed coordinate system).
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Theorem 3.5.4 Let P andQ be two polygonal sets. LetBP , BQ be sets of clockwise (counter-

clockwise) oriented boundary segments ofP andQ. Then∫
P

∫
Q
g(‖xp − xq‖)dxpdxq =

∫ ∞

0
W (l)g(l)ldl, (3.12)

whereg is any function such that integral on the left exists and

W (l) = 2πFP∩Q +
1
2

∑
p∈BP

∑
q∈BQ

M∗(l, p, q) = 2πFP∩Q +
1
2
M∗(l, BP , BQ), (3.13)

whereFP∩Q is the area ofP ∩Q.

To prove this statement we will have to obtain several intermediate results. First we will obtain

a similar result for two non-overlapping triangles, then we will extend it to the case of an arbitrary

union of non-intersecting triangles, and finally we will prove the general case.

LetAB andCD be two arbitrary separated line segments from the counter-clockwise oriented

boundariesBP , BQ of two non-intersecting trianglesP andQ. SegmentAB divides a plane in

two half-planes so that the triangleP is only in one half-plane. Using this fact when considering a

segmentK intersectingAB andCD, we can answer following two questions:

1. CanK have its end insideP?

2. CanK have its end insideQ?

Following table summarizes answers for different possible orientations of the segments. Illus-

tration is provided in Figure 3.6.

Type AB OC Answer 1 Answer 2 Sign ofM∗

0
−−→
BA

−−→
CD yes yes +

1
−−→
AB

−−→
CD no yes −

2
−−→
BA

−−→
DC yes no −

3
−−→
AB

−−→
DC no no +

Table 3.1: List of the types of the line segment pairs, their orientation, answers to questions 1 and
2, and the sign of the signed measure for the given orientation

We can classify all pairs(p, q) (p ∈ BP andq ∈ BQ) into four types described in the table.

It should be noted that for pairs of type 1 and 3 the segmentK has exactly two intersection points

with triangleP (except when the intersection is a vertex ofP ). This implies that the movements
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Figure 3.6: Possible pairwise orientations ofAB andCD.

of K when it intersects pairsp, q of type 0 contain all other movements ofK (only the movements

such thatK ∩P 6= ∅ andK ∩Q 6= ∅ are considered). Similarly, the movements whenK intersects

pairs of type 3 are contained in the movements of type 2 and also in the movements of type 3. Let

Ti be a set of movements ofK so that it intersects at least one pair of typei. It is easy to see that

T1 ∩ T2 = T3. We are interested in the kinematic measure of the movementsT0 (T1 ∪ T2), i.e.

M(l, P,Q) = m(K : T0 (T1 ∪ T2). Using set additivity of kinematic measure and the sign ofM∗

from Table 3.1

m(K : T0 (T1 ∪ T2))

= m(K : T0)− (m(K : T1 ∪ T2)

= m(K : T0)−m(K : T1)−m(K : T2) +m(K : T3)

=
∑

p,q:(p,q) type 0

M∗(l, p, q) +
∑

p,q:(p,q) type 1

M∗(l, p, q)

+
∑

p,q:(p,q) type 2

M∗(l, p, q) +
∑

p,q:(p,q) type 3

M∗(l, p, q)

=
∑

p∈BP ,q∈BQ

M∗(K, p, q),

which leads to the following lemma
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Lemma 3.5.5 LetP andQ be two non-overlapping triangles inR2. The kinematic measure of an

oriented segment of lengthl with one end inP and the other end inQ is

M(l, P,Q) =
∑
p∈BP

∑
q∈BQ

M∗(l, p, q) = M∗(l, BP , BQ),

whereBP andBQ are oriented boundary ofP andQ accordingly.

Any polygonal setP is a union of finitely many disjoint trianglesP = ∪ni=1Pi that could be

obtained triangulating each polygon inP . Let P = ∪Pi andQ = ∪Qi be two non-intersecting

polygonal sets, wherePi andQi represent a partition ofP andQ into triangles. Using set biaddi-

tivity of M

M(l, P,Q) =
∑
i,j

M(l, Pi, Qj) =

=
∑
i,j

∑
pi∈BPi

,qj∈BQj

M∗(l, pi, qj)

=
∑

p∈BP ,q∈BQ

M∗(l, p, q). (3.14)

The last step can be obtained by noting that if any two triangles from the same polygonal set

share a boundary segment, i.e. un-oriented segmentpi is the same as un-oriented segmentpj ,

then those segments must have opposite orientations (boundary is always oriented in one direction,

say, counter-clockwise) and so for any other segment q separated frompi we haveM∗(l, pi, q) +

M∗(l, pj , q) = M∗(l, pi, q)−M∗(l, pi, q) = 0.

To prove the general case of Theorem 3.5.4 consider two, possibly intersecting polygonal sets

P,Q. LetPP = P \Q, PQ = P ∩Q, andQQ = Q \ P . PP, PQ, andQQ are non-intersecting

polygonal sets. Using Equations (A.5) and (A.4),

WP,Q(l) = WPP,PQ(l) +WPP,QQ(l) +WPQ,QQ(l) +WPQ,PQ(l)

= (M(l, PP, PQ) +M(l, PP,QQ) +M(l, PQ,QQ))l/2

+M(l, PQ, PQ)l (3.15)

To findM(l, PQ, PQ) consider a partition ofPQ into trianglesPQi. Then

M(l, PQ, PQ) =
1
2

∑
PQi∈PQ,PQj∈PQ, i6=j

M(l, PQi, PQj)

+
∑

PQi∈PQ
M(l, PQi, PQi) (3.16)
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The quantityM(l, PQi, PQi) can be obtained using Equation (3.4), using the fact thatM∗(l, p, q) =

Mb(l, p, q) for any two different oriented boundary segmentsp, q of a convex set, and using the fact

thatM∗(l, p, p) = −Mb(l, p, p) for any oriented segmentp.

M(l, PQi, PQi) = 2πFPQi +
1
2

∑
p∈BPQi

,q∈BPQi

M∗(l, p, q)

whereFPQi is the area ofPQi. Hence, Equation (3.16) becomes:

M(l, PQ, PQ) =
∑

PQi∈PQ
2πFPQi +

1
2

∑
PQi∈PQ,PQj∈PQ

M∗(l, BPQi , BPQj )

= 2πFPQ +
1
2
M∗(l, BPQ, BPQ)

as all terms corresponding to the common boundary between the trianglesPQi cancel each other in

the sum.

From Equation (3.15) and Lemma 3.5.5,

WP,Q(l) =
l

2
(M∗(l, BPP , BPQ) +M∗(l, BPP , BQQ)

+M∗(l, BPQ, BQQ) +M∗(l, BPQ, BPQ))

=
l

2
(M∗(l, BP , BPQ) +M∗(l, BPP , BQQ) +M∗(l, BPQ, BQQ))

=
l

2
(M∗(l, BP , BPQ) +M∗(l, BP , BQQ))

=
l

2
M∗(l, BP , BQ).

The second and third equalities are consequence of the fact thatPQ andPP share a part of

their boundary, and the fourth equality uses the fact thatPQ andQQ share a part of their boundary,

in particular,(∂PP ∪ ∂PQ) \ (∂PP ∩ ∂PQ) = ∂P . This completes the proof of Theorem 3.5.4.

3.6 Nonpolygonal Areas and Extension to Higher Dimensions

A trivial way to proceed in the case of nonpolygonal areasAi would be to approximate the areas

of interest by polygons and use described algorithms. To do a precise approximation may require

polygons having a lot of vertices and that could make the problem too difficult.

LetP,Q be two finite connected sets, andBP ,BQ their clockwise oriented boundary. Formally

we could consider a contour integral

M∗(l, BP , BQ) =
∮
BP

∮
BQ

M∗(l, dp, dq),
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Figure 3.7: Two prisms inR3.

as a generalization of the sum in the Equation (3.13). The usefulness of such generalization in

practical applications is questionable.

In higher dimensions the problem of findingMAi,Aj is much more complicated unless the re-

gionsAi have a special form. An irregular planar region considered over a fixed time period is a

prism in three dimensional space (position on the plane and in time). It is not difficult to extend the

current two dimensional results to three dimensions when the regionsAi are prisms. LetA andB

be orthogonal prisms inR3 with the basesA2 andB2 on the same planep (see Figure 3.7). Leth be

a common height of the prisms and letu = (u1, u2, u3), v = (v1, v2, v3) be a Cartesian coordinate

system such that the first two components denote coordinates in the planep. Then the quantity

WA,B(l) =
∫
u∈A,v∈B, ‖u−v‖=l

dudv

=
∫ 1

0
du3dv3 ×∫

(u1,u2)∈A2,(v1,v2)∈B2,
∑

i=1,2
(ui−vi)2=l2−(u3−v3)2

du1du2dv1dv2∫ 1

0
W ∗
A2,B2

(l2 − (u3 − v3)2)du3dv3 (3.17)
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whereW ∗
A2,B2

is the appropriate kinematic measure inR2. This result generalizes to higher di-

mensions, we just need to do the one dimensional integral ofW ∗
A2,B2

in any (higher than two)

dimensional Euclidean space to get the appropriate functionW . It should be noted that the re-

gionsA andB in four or more dimensions can not be any orthogonal prisms; irregular boundary

is allowed only for two dimensions and those dimensions must be the same for both regions. The

regions must be boxes in the remaining dimensions.

The measureMAi,Aj is difficult to calculate for a general polytope inRn. In applications the

regions in high dimensions usually have a very specific form (it is not easy to imagine a general

polytope in more than three dimensions), so this specific form might lead to a simpler calculation

of MAi,Aj .

3.7 Discrete Approximation

Instead of computing the functionsWAiAj (l) exactly we could divide the regionA into a grid of

small squaresSop and approximate the integral in Equation (2.2) by the sum over those squares.

Equation (2.2) then becomes:

zizj =
∑

{o,p:Sop∈Ai}

∑
{q,r:Sqr∈Aj}

γ(Distance(Sop, Sqr))Area(Sop)Area(Sqr),

i, j = 1, . . . ,m.

Using standard filling algorithms for raster graphics we can easily check if a squareSop belongs

to the regionAi. The number of computations can be prohibitive if we want to improve the approx-

imation. If we takeAi, Aj to contain on the order of1002 grid squares then to obtain the integral in

Equation (2.2) we have to perform an order of1004 calculations. For a twice finer grid, one would

require24 = 16 times more calculations.

3.8 Kernel V

The kernel

VAB(s) =
∫
A

∫
B
ei(u−v)sdudv

is connected to the kernelWAB(l) =
∫
u∈A,v∈B,‖u−v‖=l dudv. If we define

W ′
AB(l) =

 WAB(l)/2 if l ≥ 0

WAB(−l)/2 if l < 0
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Figure 3.8: The kernelsWAi,Aj (l)

ThenVAB(t) = eiltW ′
AB(l) The functioneiltW ′

AB(l) seems to be not integrable in a closed form

with respect tol. This means that the kernelVAB(t) =
∫
eiltW ′

AB(l)dl has to be obtained numeri-

cally. The precise way in which the kernelV is to be obtained depends on the method used to solve

integral Equations (2.2, 2.3).

3.9 Example

To illustrate the behaviour of the kernel weight functions we consider a simple example shown in

Figure 2.1. The three regionsA1, A2, A3 partition a30 × 30 square regionA. KernelsW for all

pairs of regions are shown in Figures 3.8.

The kernelsV are real valued as the functionW ′ is symmetric. The plots of kernelsV are shown

in Figure 3.9. A closeup is provided in Figure 3.10. The functionV was calculated by performing

the fast Fourier transformation of the values of the function2W ′ at 243 points equally spaced on

the interval(−30
√

2, 30
√

2). The range fors was interval2π 121
30
√

2
× (−1, 1). As the functionV is

symmetric it was plotted only for positive values ofs.
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Figure 3.9: The kernelsVAi,Aj (l)

Figure 3.10: The closeup on kernelsVAi,Aj (l)
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3.10 Summary

In this Chapter we present an algorithm to compute a quantity

WAB(l) =
∫
u∈A,v∈B,‖u−v‖=l

dudv

for any two finite regionsA andB with a piecewise linear boundary. This quantity is essential in

estimating the covariance function of the stochastic process given its integrals over the regionsA as

described in Chapter 2. The quantity may also be used to generate a random sample of integrals of

a stochastic process with any specified covariance structure.

To obtain the quantityWAB we first notice that it is related to the kinematic measureM(l, A,B)

of all movements of an oriented segment of lengthl with one end in setA and the other end in set

B (Equations (A.4) and (A.5)). In Section 3.2 we show that this measure can be expressed in terms

of the kinematic measure of all movements of an oriented segment with both ends in the same set.

In Section 3.3 we relate the measureM(l, A,B) to the kinematic measureMb(l, Sa, Sb) (see

Definition 3.2.1) of all movements of an oriented segment of lengthl intersecting two line segments

Sa, Sb. We provide a closed form formula for the measureMb in terms of l, Sa, andSb (see

Equations (3.6, 3.7, 3.5, 3.9). The closed form expression for integrals involved in those measures

is given in Equation (3.8).

The measureMb can be generalized to a signed measureM∗ (see Section 3.5) which depends

on the orientations of the segmentsSa andSb. The measureM∗ is then extended to the finite unions

of line segments.

The boundaries of the regionsA andB involved in Equation (1.1) are finite unions of line

segments so the measureM∗ is defined on them.

As the most important result we find a direct relationship between the quantityWAB(l) and the

measureM∗(l, ∂A, ∂B) in Theorem 3.5.4.

Then, in Section 3.6, we extend the results for a general (non-polygonal) regions and to higher

than two-dimensional spaces. We conclude with an example.



Chapter 4

Prediction from spatial aggregates

4.1 Introduction

This chapter is about determining a functionf(x) given its integralszi =
∫
Ai
f(x)dx for the purpose

of animation (see, e.g, Eddy and Mockus (1993a), (1993b)), whereAi’s partition a finite setA ⊂
Rd.

We consider the particular ill-posed inverse problem of determining a functionf described at

the beginning of the section with an intent of producing an animation off . The observed values

arezi =
∫
Ai
f(x)dx whereAi’s partition a finite setA ⊂ Rd, so the simplest interpolant for the

functionf could be a piecewise constant function

f̂(x) =
∑
i

Ix∈Ai

zi∫
Ai

1dx
(4.1)

Discontinuity of such function can be distracting in animations and needs to be avoided (see Eddy

and Mockus (1994)). We consider methods that produce a continuous interpolant.

In Section 4.2 the related work on prediction of the stochastic process is described. Various

ways to remove the trend are listed in Section 4.3. Section 4.4 contains description of a kernel type

method to interpolate a function from its integrals.

4.2 Best Linear Unbiased Prediction

In this section we first review related work and then introduce motivation for BLUP in Subsec-

tion 4.2.1.

39
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In many applications data sets consist of observationsz1, . . . , zn taken at corresponding loca-

tionsx1, . . .xn. The locationsxi are usually points in d-dimensional Euclidean spaceRd. A fairly

common analysis of such data is based on the assumption that it is derived from a stochastic process

F (x) : x ∈ A ⊂ Rd. The processF is called a random field. The data are derived from a single

realizationf of the fieldF . For the inference to be generally possible one of two assumptions about

F are usually made:

1) F is stationary in the wide sense (second order stationary).

2) F is an intrinsic random function of orderk (IRF-k) for some integerk (Matheron (1973)).

Under assumption 1) the expected valueE(F (x)) = c and does not depend onx. There exist a

nonnegative definite covariance function

γ(u− v) = E((F (u)− c), (F (v)− c)).

Under assumption 2)E(F (x)) is a polynomial inx of degreek. There exist a generalized

covariance function (see, e.g., Matheron (1973)).

When the (generalized) covariance function is known, the best linear unbiased predictor (BLUP

or kriging predictor) exists and the expressions for it and its mean squared prediction error are well

known. However, in practice the (generalized) covariance function is rarely known; consequently,

the parameters of a (generalized) covariance function are first estimated and then used in prediction.

The quality of such prediction was considered for a finite sample case by Zimmerman and Cressie

(1992), for an asymptotic case by Stein (1991). A Bayesian analysis in predicting spatial functions

can be found in, for example, Kitanidis (1986).

4.2.1 The Aggregate Data Problem

Let F (x) be a stochastic process with the indexx ∈ A ⊂ Rd. Let the observed valuesz of the

single realizationf of the processF be

zi =
∫
IAi(x)f(t)dt, (4.2)

whereIAi ’s are indicator functions for disjoint setsAi ⊂ A.

Let g(f) be a linear operator that is the quantity of interest which would typically bef(x) (value

at some pointt), or the whole functionf(·).
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For a prior distributionπ(f) and a loss functionL(g(f), ĝ(z)) whereĝ is a function of the data

z = (z1, . . . , zn), we can look for̂g that minimizes posterior loss:

ĝ = arg min
ĝ

∫
L(g(f), ĝ(z))dP (f |z),

whereP (f |z) is the posterior distribution for the realizationf .

For the squared error loss (L(g, ĝ) = (g − ĝ)2) we have

ĝ = arg min
ĝ

∫
(g − ĝ)2dP (f |z)

= arg min
ĝ
E(g2|z) + ĝ(ĝ − 2E(g|z))

= E(g|z), (4.3)

whereE(g|z) is a posterior mean ofg given z, and we assumed thatE(g2|z) < ∞. Wheng is

a function,L may be the integrated mean square error loss (L(g, ĝ) =
∫
(g(s) − ĝ(s))2ds), and if∫

A g(s)ds <∞ with probability one (andds is countably finite), then we can exchange the order of

integration and obtain̂g(s) = E(g(s)|z) almost everywhere with respect to the measureds. Hence,

in both cases the distribution of the scalar quantityg|z or g(s)|z is of interest.

In case when the joint distribution of(g(s), z) is normal we haveE(g(s)|z) = ĝ(z) whereĝ is

a well known linear function ofz given by the formula for the conditional normal distribution. Let

µ(s) = E(g(s)), µi = E(zi), ci(s) = Cov(g(s), zi), cij = Cov(zi, zj) calculated a priori. Then

the posterior expectation

E(g(s)|z) = µ(s)− (ci(s))(cij)−1((µi)− z). (4.4)

In case when we just know the first two moments of the vector(g(s), z) Equation (4.4) defines

best linear unbiased predictor forg(s).

4.2.2 Prediction

Kriging Equation (4.4) involves quantitiesµ and c that are unknown. The trendµ(·) is usually

assumed to be a constant (see Section 4.3 for other approaches) and we could estimateci(s), cij as

described in Chapter 2.

4.3 Estimators of the Trend

In some cases the spatial process has a nonconstant trend. In the case of linear trend we can es-

timate variogram (see Section A.1) and do best linear unbiased prediction based on the estimated
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variogram (see, e.g., Cressie 1991). When the trend is a higher order polynomial we could estimate

a generalized covariance function of higher order and then do appropriate prediction.

A nonparametric estimate of the trend can be obtained using spatial moving medians (see Sec-

tion 5.4.3). The trend could then be subtracted from the observed values and the prediction could

be done on the residuals.

4.4 Kernel Type Estimator

The usual kernel estimator forf(x) givenzi = f(xi) is

f̂(x) =
∑
iK(x, xi)zi∑
iK(x, xi)

,

whereK(x, xi) is a kernel function. When data are aggregatezi =

∫
Ai
f(x)dµ(x)∫

Ai
dµ(x)

one could define

an estimator by analogy

f̂(x) =
∑
i zi
∫
Ai
K(x, xi)dµ(xi)∑

i

∫
Ai
K(x, xi)dµ(xi)

.

An implementation of such method is described in 5.4

Some statistical justification for the kernel smoothing over integrals can be given. Lets consider

following version of kriging. Let observationsyi =
∫
K(x)(f(x) + W (x))dx whereK is the

kernel function (from a spaceK of infinitely differentiable functions with bounded support),f is the

process of interest, andW is white noise which is uncorrelated withf . The integral is interpreted as

linear random functional onL2 closure of the space of functionsK (see, e.g., Gelfand and Vilenkin

(1964)).

The best linear unbiased predictor off(0) is defined by the kernelK satisfying the unbiasedness

condition
∫
K(x)dx = 1 and the projection property:

Cov
(
f(0)−

∫
K(x)(f(x) +W (x))dx,

∫
G(x)(f(x) +W (x))dx

)
= 0

for all G ∈ K satisfying
∫
g(x)dx = 0. The covariance can be written as∫

G(x)
[
γ(x)−

∫
K(y)γ(x− y)dy − σK(x)

]
dx = 0,

where
∫
σK(x)G(x)dx =

∫
K(x)W (x)dx

∫
G(x)W (x)dx. By arbitrariness of the functionG the

expression in the square brackets is constant. The solution to the system of equations

γ(x)−
∫
K(y)γ(x− y)dy − σK(x) = C∫

K(x)dx = 1
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defines optimal kernelK for the continuous kriging problem. In Stein (1990) an expression for

kernelK was found for a particular form of generalized covariance function. It was also shown that

asymptotically the kernel predictor was equivalent to the universal kriging predictor. Although the

results were obtained for the case of point observations data the asymptotic considerations for the

integral data are similar.

4.5 Example

To illustrate the behavior of various predictors we consider a simple example shown in Figure 2.1.

The stochastic processf was generated on a regular30× 30 grid using covariance functionγ(x) =

e−0.1‖x‖. The realization of the process and the piecewise constant predictor are shown In Fig-

ure 4.1.

Figure 4.1: The sample path off and a piecewise constant estimator.

We obtained optimal values for(α, σ) minimizing Equation (2.7) for the parametric form of

covariance functionγ(x) = σeα‖x‖. The observed valueszi =
∫
Ai
f(x)dx and optimal values for

(α, σ) are given in Table 4.1.

The predicted surfaces using actual and estimated parameters are in Figure 4.2.
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z1 z2 z3
280.98087612230 220.46143366014 99.605256094011

Parameter α β

Actual -0.1 1
Estimated -0.0361647 0.780573

Table 4.1: The observed data with actual and estimated parameters of the covariance function

Figure 4.2: The predictedf using actual (on the left) and estimated parameters of the covariance
function.

4.6 Summary

In this chapter we reviewed existing spatial prediction methods that can be used together with the

estimate of the covariance function. Section 4.2 described a general approach for best linear pre-

diction of a continuous spatial process. The method uses the covariance function of the process

to calculate the conditional mean of a Gaussian process (with the same first and second moments)

given the data. Section 4.2.1 considers specifics of prediction from aggregate data. In Section 4.3

we described various ways to estimate the trend of a spatial process using observations that are

integrals of the process. We also present an alternative simple to implement kernel type method in

Section 4.4. This method convolves kernel with a function (not with point observation as is usual

with standard kernel methods) that is constant over the regions where the data was collected. We

provide some informal justification for the use of such a method. Finally, we conclude with a simple
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example to illustrate the prediction methods.



Chapter 5

Example

5.1 Introduction

Visualization of complex models or data can provide useful insights that are difficult or impossible

to detect in other ways. Here an animation of a function of three dimensions is considered; two

dimensions represent space and the remaining one time. Although showing a set of images in a

rapid sequence (the animation) is not a new concept, the use of this method is new in statistics and,

in particular, in epidemiology.

We describe animation of mumps incidence rates in the United states. In Section 5.2 and 5.3

the data is described. Section 5.4 contains description of the process of producing the animation.

Section 5.6 contains description of the animations of the mumps recorded on videotape.

5.2 Description of the data

The data on the mumps disease that were collected in the United States from 1957 until 1989 by

NNDSS was obtained from the “statlib” library.

• The first dataset consists of the monthly mumps cases for each state in the United States for

the period from 1968 until 1988. The data are not available for some months and in some

states. There are 33 cases reported with an unidentified month in a year.

• The second dataset has sizes of population for every county as given by 1970 and 1980 cen-

suses.

46
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The monthly state data consists of following records:

State Fips Code (year − 1900) Month Number of Cases

The number 13 was used for unidentified month. There are 10342 records. The first date of

reporting is January 1968, the last - December 1988. The maximum of the number of cases - 3,298

was reported in Wisconsin in January 1968. The minimum number of reported cases was 1, because

the Centers for Disease Control does not as part of normal processing store zeroes in the data. The

highest incidence rates of the disease (96 per100, 000 population) was reported in Iowa on March

1968. The total number of reported cases is 880,240.

5.3 History of mumps in the US

Mumps is a seasonal disease. The peak occurs in early spring, while the lowest incidence rates can

be observed in early autumn. As most of the mumps cases are school age children, this seasonal

behavior can in part be explained by the school year. Over a longer period mumps had higher

incidence rates before state-level vaccination programs started at the end of 1960’s. By the end

of 1970’s these vaccination programs almost completely wiped out the disease, leaving only a few

cases per state per month. Vaccination programs were stopped in some states after awhile and

strong outbreaks of the disease occurred in 1986-1987 and in 1989, primarily among unvaccinated

adolescents and young adults in states without requirements for mumps vaccination. This story

is well supported by the graph (Figure 5.1) of the logarithm of incidence rates in California and

Wisconsin. A seasonal periodicity can be seen (high in spring and low in autumn) and an outbreak

in Wisconsin in the second half of the eighties.

The plot in Figure 5.2 shows behavior of the mumps disease over a longer period of time. The

top of the plot shows the percent of population in the reporting states and the bottom shows the

logarithm of mumps cases in the reporting states. The top part demonstrates that the adjustment of

the bottom plot to account for the cases in non-reporting states is small. The mumps disease had

periodic peaks (every three years) and sharply decreased during the vaccination programs of the

seventies. There is also a big peak in the 1986 when the large mumps outbreak occurred. This plot

was produced using yearly state data. A barely visible dotted line (it is very close to the solid line)

on the bottom part of the plot was produced from the monthly state data summing over the seasons

of disease (from September until August) to reduce correlations between years. The result is close

to the sums over the calendar years. The enlarged version of the two plots is in Figure 5.3
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Figure 5.1: Log of the mumps monthly incidence rates versus months from Jan. 1968 to December
1988 for California and Wisconsin

Figure 5.2: Behavior of the mumps disease from 1953 until 1989
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Figure 5.3: Behavior of the mumps disease from 1968 until 1989 as given by summing over calendar
months (from January until December) in solid line and by summing over the disease season (from
September until August) in dotted line

5.4 Animation techniques

Our goal is to estimate and display a smoothly varying scalar functionf with a three dimensional

argument(x, y, t) as was described in the beginning of Section 5.1.

The following features of an animation should be noted:

1) The time dimension is substantially different from space dimensions. The perception of time

and space are quite different. The concept of spatial distribution versus temporal variations at

a fixed location are also dissimilar.

2) The eye can not readily distinguish a single pixel from its neighbors.

3) Nonsmooth changes in time are more difficult to detect than similar changes in space.

The first and third properties suggest that interpolation in space could be done independently of

interpolation in time.

The second property suggests that spatial interpolation could be done to some subset of the

image pixels (preferably a regular grid) and remaining pixels could be filled using simple bi-linear
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(see Section 5.5.4) interpolation. This would save computation time without degrading the perceived

smoothness of the animation.

The next subsection contains description of scaling the animated function (its values and its

arguments) to fit into the range of available colors, pixels, and video frames. Then we do temporal

interpolation to animate the data and do smoothing to the raw data before animation.

5.4.1 Scaling

Once the function of interestf(x, y, t) is determined, an animation is like a generalization of plotting

to three dimensions. To produce an animation one has to scale a four-dimensional object into the

graphical device coordinates. Plotting a function of a one dimensional argument only requires

scaling of a two-dimensional object (the values of a function and its argument) to fit on the screen

or paper.

A function of three dimensions has to be scaled to be shown on a device with finite spatial and

temporal resolution. We map the range of the function values into 256 color values. The region

where the function is shown is mapped into the1000 × 563 pixels of our display window and the

time interval of one or two minutes (there are1800 video frames per minute). These values are

limitations of human perception and/or video equipment. According to experiments (see Levkowitz

and Herman, 1992) people can clearly distinguish around 120 ordered color values (i.e., they can

clearly say which color is “smaller” and which color is “bigger”) on the appropriately chosen color

scale. The number of distinct pixels on a television screen is limited by the bandwidth of the display

device screen imposing a range of possible values for two dimensionsx, y. One or two minutes of

technical video is close to becoming boring to anyone other than a subject matter specialist, limiting

possible values in the remaining dimensiont.

Mumps incidence decreases dramatically from 1968 to 1988. In order to better use the color

scale we made a nonlinear transformation of the incidence rates before transforming them linearly

into colors. The transformation we chose was to use the empirical distribution function of the data

so that the resulting colors would be approximately uniformly distributed over the color scale. We

tried using linear and logarithmic scales, but in that case only large variations of incidence rates in

the beginning of the period (1968-1978) were detectable, leaving the later period without visible

action. In the image processing literature such a transformation of the pixel intensities is called

“equalization” (see, for example, Pavlidis, 1982). The actual color scale is displayed at the bottom

of the frame with the corresponding incidence rates given just above the colors.
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5.4.2 Temporal Interpolation

The entire mumps data set consists of 252 months. NTSC video is displayed at the rate of 30 frames

per second (NTSC is the television signal that is used in the United States and Japan). After several

experiments we decided that displaying the data at the rate of 20 frames per month was a reason-

able compromise between the time required to look at the entire data set and the apparent speed

with which changes take place. Thus each month is displayed for two-thirds of one second. If the

recording were done so that twenty identical frames were recorded and then the switch were made

to the next month’s data, the viewer would be distracted by the jumpiness of the resulting images

(see Section 5.6.1). Consequently, we chose to interpolate linearly between consecutive months.

Precisely, the correctly colored maps for two consecutive months are calculated and then 19 inter-

mediate maps are calculated by linear interpolation in the color scale. This results in substantially

smoother appearance.

We considered other types of temporal interpolation (e.g, sinusoidal, trapezoidal, and quadratic),

but linear interpolation seemed to be adequate. Other types of interpolation produced additional

visual artifacts (like monthly swinging) which interfered with the display of seasonal variations

present in the data.

5.4.3 Smoothing Raw Data

Observed data usually contains a substantial amount of noise which, if not removed, can produce a

“jumpy” animation which, in turn, could hide interesting features of the animated process.

In time series analysis data are frequently smoothed using running averages or running medians

to remove noise. Given a series of observationszi, the value of the running median at timei is

ẑi,k = Median{zj : |j − i| ≤ k},

wherek is called the size of the running median. Our definition of running median of sizek is

often referred to as “running median of2k + 1”, but the latter terminology does not extend to the

multidimensional case.

Tobler and Kennedy (1985) used an interpolation from spatial averages. We use spatial (and

space-time) medians to smooth the data, not just interpolate missing values. We prefer to use medi-

ans (as opposed to averages) because averages are not invariant under the transformation we used.

In the mumps data there are both time and space components, so we could do running medians

in time for every region, do moving medians in space for every time moment, or do running-moving
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medians in time and space together. To define moving medians in space we need to define adjacen-

cies between the locations of observations because the simple (total) ordering by time is no longer

present. In our case, regionsAi (states) form a partition ofA (the continental US). We define two

spatial regions to be adjacent (or 1-adjacent) if they share a common border consisting of more

than one point. If there is a region to which they both are adjacent then we call them 2-adjacent.

Note that a pair of regions that are 1-adjacent are automatically 2-adjacent. Similarly we can define

k-adjacent regions. Given the valueszi for regionsAi we define a moving median of size k at the

regionAi as ẑi,k = Median{zj : Aj is k-adjacent toAi}. The time dimension can be thought

of as just another space dimension and then we can apply the moving medians in space and time

simultaneously.

We successfully used those techniques to improve the smoothness of animations. We found that

moving medians of size one (in space-time) produce a substantial amount of smoothing (see Section

5.6.1).

5.5 Estimation from Spatial Averages

5.5.1 The Problem

The problem of interest is to estimate a functionf(x, y, t) (incidence rates of the mumps disease at

some location and time moment(x, y, t) given sets{Aj} and data{zj}. Henceforth we will denote

a space-time location asx = (x, y, t) to simplify the notation. The relationship betweenf and data

is given by following equation

zj =
∫
x∈Aj

f(x)dG(x), j = 1, . . . , N

whereAj ⊂ A ⊂ R3 andG(x) is the population distribution.

Assuming thatf(x) is random, one can look for the predictorf̂ that minimizes the mean square

error (MSE),

MSE(f̂(x)) = E((f(x)− f̂(x))2).

The functionf(x) has to be estimated over some set ofx ∈ A ⊂ R3, so the integrated MSE∫
A
MSE(f̂(x))dx,

or maximal MSE

sup
x∈A

MSE(f̂(x))
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could be of interest depending on the problem at hand.

Let f(·) be a zero mean stationary process andci(x) = E(f(x) · zi), and letC = (cij) where

cij = E(zi · zj). Then the minimum MSE predictor forf(x) would be

f̂(x) = c(x)C−1z, (5.1)

wherec(x) = (ci(x) is a vector of lengthN , C−1 is the inverse of theN × N covariance matrix

for the{zi}, andz = (zi) is the observation vector of lengthN . When the assumption thatf(·) is

a zero mean process is unreasonable the mean could be estimated taking global or local averages of

the observationszi.

Equation 5.1 has some drawbacks. It requires inversion of the matrixC as well as knowledge

of the covariance function of the process to obtainci(x) andcij . In the case of observations at a

point (zi = f(xi)) there are parametric and nonparametric ways to estimate the covariance function

(see, e.g., Cressie, 1991). When data are aggregate, as is in our case, it is still possible to estimate

the covariance function (see Chapter 2). Unfortunately, covariance function estimation is difficult

so we also considered alternative simpler solutions.

The estimation problem we are considering could be modified so that the interpolation would

be done given the values (instead of integrals) off at some points. This approach is described in

next section.

5.5.2 Transforming the Problem

For the interpolation problem when data are values of the function at some points there exist a wide

range of fast and simple-to-implement algorithms. A kernel estimator forf(x) givenzi = f(xi) is

f̂(x) =
∑
iK(x,xi)zi∑
iK(x,xi)

,

whereK(x,xi) is a kernel function. When data are aggregate

zi =

∫
Ai
f(x)dG(x)∫
Ai
dG(x)

one could define an estimator by analogy

f̂(x) =
∑
i zi
∫
Ai
K(x,xi)dG(xi)∑

i

∫
Ai
K(x,xi)dG(xi)

.

To approximate the integrals
∫
Ai
K(x,xi)dG(xi) we took a sample of points uniformly dis-

tributed within each stateAi (see Figure 5.11). The number of points sampled in each state was
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taken proportional to the area of the state. We assigned the value to those points to be equal to the

incidence rate for the particular state the points are in. In this way we take into account the differing

areas and shapes of the states.

These sampled points are used to interpolate a function to every pixel on the map. We used a

weighted combination of the function values at the sampled points to obtain the value at all pixels.

The weight functionK(x,xi) was chosen to be exponential in the squared distance between the

sampled pointxi and the pixelx where the function was being interpolated.

The method we used to estimatef(x) in the animations can be described as follows:

• Choose a set of points and a set of values for everyAj , xij ∈ Aj , zij , i = 1, . . . , kj .

– we took the number of pointskj in the regionAj to be proportional to the area ofAj .

– The pointsxij are distributed inAj so that they repel each other and the boundary ofAj .

A point xi+1,j is sampled uniformly from the setAj \ ∪ik=1rk, whererk is a disk with

a center atxkj . The radius ofrk depends on the total number of points to be sampled

fromAj and on the size ofAj .

– The values off atxij are assumed constant for eachAj , zij = zj .

• Use the estimator

f̂(x) =
∑
iK(x,xij)zij∑
iK(x,xij)

with K(x,xij) = e−λ‖xij−x‖2 .

• Choose the smoothing parameterλ to provide an acceptable degree of smoothness to the

animation.

5.5.3 Best Linear Unbiased Prediction

Here we implement the methods described in Chapter 2 and Chapter 4.

First we prepare the data, then estimate the covariance function, and, finally, perform the pre-

diction.

Preparing the Data

We consider the incidence rate of mumps (number of disease cases divided by the population size)

for a particular state to be the aggregate measure of the disease in that state.
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Figure 5.4: The approximate boundary of the states

The state is specified as a region inR2 by a set of its boundary line segments. The boundary was

obtained by taking the boundary line segments expressed as a sequence of points (latitude and lon-

gitude pairs) from the “maps” database available on statlib (e-mail: statlib@stat.cmu.edu, see also

Becker and Wilks (1991)). The boundary was then transformed using Albers Equal Area Projection

with 25 and45 degree base latitudes (see Deetz and Adams (1921)). To speed up further calcula-

tions the boundaries were “thinned” to reduce the number of line segment pieces in the boundary

without changing the visual appearance of the map (at the resolution of1001 × 607 pixels). The

resulting boundaries were used in the following calculations. Using different thinning parameter we

produced two sets of boundaries shown in Figures 5.4 and 5.5. The approximate boundary shown

in Figure 5.4 was used to check the sensitivity of the estimation on small perturbations of shape.

FunctionsWA,B(l) =
∫
u∈A,v∈B, ‖u−v‖=l dudv are plotted for several states in Figure 5.6.

The incidence rates of the mumps (fori’th state andj’th time period) were transformed to make

the empirical distribution look more like a normal distribution (see Equation 5.2). The logarithmic

transformation is reasonable with the count data (the incidence rates were obtained dividing counts

by the population size). To avoid undefined results when transforming zero counts we took a very

small power transformation equivalent to logarithm. All following inference (up to a different scale

factor) was identical for both, small power and logarithmic transformations.
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Figure 5.5: The exact boundary of the states

Figure 5.6: The functionsWA,B(l) for several states. The abscissas are in miles, the ordinates have

no dimension W 1/3

Area(A)1/2
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Figure 5.7: The values (points) and the trendyi(·) (line) of
(

Casesi(j)
Populationi(j)

)1/100

yi(j) =
(

Casesi(j)
Populationi(j)

)1/100

(5.2)

The values ofyi(j) are plotted in Figure 5.7. The trendyi(·) =
∑

k
yi(k)∑
k

1
(only non-missing

values were averaged) and the histogram of the residualsyi(j)− yi(·) are in Figure 5.8.

To obtain aggregate quantities over the states we multiply the incidence rate by the area of the

state to get the integral of the incidence rate over the state.

zi(j) =
(
yi(j)− yi(·)

)
Area(Statei)C (5.3)

Those quantitieszi(j) were used to estimate the covariance function and to predict the process

representing the0.01 power of the mumps incidence rates. The constantC was used to scale the

sum of squares into the range appropriate for the numeric optimization methods.

Estimating the Covariance Function

We face several questions while estimating the covariance function. Should we estimate the covari-

ance function:

1. for each month?

2. for the months in the second period starting from January 1975.

3. for the average (median) of the observed covariance matrices.
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Figure 5.8: The histogram of the residualsyi(j)− yi(·)
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4. in parametric or nonparametric form?

5. in spectral or spatial domain?

We chose to estimate a parametricσeα|x| covariance function in spatial domain. We chose to

estimate the covariance function according to 1), 2), 3) and then to compare the results in Table 5.1.

The estimates of the covariance function have following interpretation. Let half-distance be a

distanced such that the covariance function of the processf satisfiesγ(d)/γ(0) = 1
2 (this definition

makes sense only for a monotone covariance function). The half-distance is the distance at which

the correlations between the values of the process drop to a half. When the half-distance increases

so do the dependencies, when the half-distance approaches zero the process is nearly a white noise.

Prediction

The Best Linear Unbiased Predictor for the zero mean processf at a points is given by following

Equation.

E(f(s)|z) = (ci(s))(cij)−1z, (5.4)

whereci(s) = Cov(f(s), zi), cij = Cov(zi, zj), andzi =
∫
Ai
f(s)ds.

The matrixcij is computed only once (using estimated covariance function), and an appropriate

submatrix (depending on which states do not report the mumps cases) is inverted for every month.

The vectorci(s) is computed only for the values ofs on a regular grid (see Figure 5.11). The

processf was predicted only on a regular grid, the time trend (see Equation 5.3) was added, and

then interpolation to every time frame and every pixel was performed as described in Section 5.4.2

and Section 5.5.4.

5.5.4 Two Levels of Interpolation

Estimation using exponential weights for each point as described in Section 5.5.2 can be very time

consuming. The frame buffer (the device that generates the NTSC video signal) has more than

500×500 pixels. Assuming an average of 10 points in each state where the value of the function

is assumed to be given, we have to perform approximately108 distance and exponential weighting

calculations for each frame. This is a substantial amount of time even on a fast workstation given

that we want to record 252×20 of those frames.
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Estimates for the Mean Covariance Matrix
Case α σ Half-distance

All Dataset -16.5 672.6 126
First Period -16.6 767.8 125.3

Second Period -16.1 480.9 129.2

Estimates for the Median Covariance Matrix
Case α σ Half-distance

All Dataset -17.1 364 121.6
First Period -17.7 501 117.5

Second Period -17.5 273 118.8

Estimates for Each Month
Function α σ Half-distance
Median -18.7 699 111.2

First Quartile -26.7 535 78.9
Third Quartile -14.7 996 141.5

Estimates for Each Month in the First Period
Function α σ Half-distance
Median -17.5 740 118.7

First Quartile -25.4 582 81.9
Third Quartile -14.1 996 146.9

Estimates for Each Month in the Second Period
Function α σ Half-distance
Median -20.4 668 101.9

First Quartile -28.8 464 72.2
Third Quartile -16.1 997 129.2

Table 5.1: The estimates of the covariance function. Half-distances are given in miles.
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Consequently the weighted estimation was performed only onto a regular grid over the United

States (see Figure 5.11). We chose the grid size to be 35 points by 25 points. We then used a bi-

linear interpolant from the four values at the corners of each of the 34 times 24 rectangles of the

regular grid to each pixel within a particular rectangle.

f(i, j) =
∑

k=0,K,l=0,L

f(k, l)
K − |k − i|
K − 0

L− |l − j|
L− 0

,

where(i, j) are coordinates of a pixel within the rectangle,K is the width of the rectangle in pixels,

andL is the height of the rectangle in pixels. The weights for each pair (regular grid point, sampled

point) are computed only once and stored.

5.6 Videotapes

The animations were produced one after another, improving the result at each step. Despite those

improvements the first steps are of interest by themselves.

The simplest possible animation is to display the raw data: a constant value of the incidence

rates for each state during every month. The result is difficult to understand due to sharp changes

between adjacent states, abrupt changes in time, and abundance of unreported cases. This animation

creates a desire for a smoother picture in space and in time.

A better looking picture can be produced by smoothing the raw data and estimating missing

values. In this case the smoothed data is displayed as being constant across each state and interpo-

lated between months. The interpolation between months removes “jumps” in time. Both linear and

sinusoidal interpolations look reasonably good, but with the sinusoidal interpolation more time is

spent showing actually observed (as opposed to interpolated) values, while it also produces monthly

swinging effect (the picture changes rapidly between the months, and the picture stops changing and

seems to be constant in the middle part of the month) that may interfere with the display of seasonal

variations. Various approaches are possible to smooth the data in space. From a practical point of

view, running medians in space and time (see Section 5.4.3) is a simple method that also fills in the

missing values. Although it is an improvement over the first step this animation still has jumps at

state boundaries.

The last step was to produce a smooth animation both in time and space. This required use of

techniques described in Section 5.5.2 and Section 4.2. The animation that is smooth in time and

space turned out to be visually appealing and easier to understand.
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Figure 5.9: Raw incidence rates in December 1986

A brief description of the equipment we used to produce those animations can be found in Eddy

and Mockus (1993).

5.6.1 Nonsmooth in Space

Nonsmooth in Time

We have used the background color to indicate missing data. The states which are missing seem to

“disappear” into the background when there is no data. An initial version of the videotape switched

instantaneously from a color to background when there was a missing observation and then back to a

color from background when there was data. The abruptness of this scheme was sufficiently jarring

that We modified the scheme to “fade” to background. This is actually done by linear interpolation

between the particular color and the background color. One frame of this animation is displayed in

Figure 5.9.

The time smoothing was performed as described in Section 5.4.2. Simple linear interpolation

in time was the first method we used. We tried other interpolation methods but could not detect any

improvement.
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Figure 5.10: The locations of points used for kernel smoothing

Filling in Missing Data

The number of states not reporting mumps cases increases in the later part of the data. This distracts

the viewer from the overall pattern of the disease. We used methods described in Section 5.4.3 to

fill in the missing values. To indicate the fact that the value was not reported we used a dotted fill

pattern for the particular state. This way it was possible to show the overall predicted pattern of the

disease together with information showing which part of the data was actually reported.

Smoothing in Missing Data

In an attempt to reveal the major patterns in the data we used moving medians as described in

Section 5.4.3 not only to fill in the missing values but also to smooth the existing values. This

resulted in large regions in space and time having roughly the same color.

5.6.2 Smooth in Space and Time

We produced two animations based on smoothing algorithms in Sections 4.2 and 5.5.2 The smoothest

animation was produced using independent time and space smoothing. The smoothing in space was

done for every month. First we estimated the intensity on a regular35 × 25 grid of points (see

Figure 5.11) using the algorithm described in Section 5.5.2 and 4.2. The particular set of pointsxij
(using the notation of Section 5.5.2) is shown in Figure 5.10.

To obtain estimates for the remaining pixels we used a simple bi-linear interpolation onto a

regular grid (see Figure regular.ps) described in Section 5.5.4. As in previous animations we chose
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Figure 5.11: The regular grid with state boundaries

to interpolate linearly the 19 intermediate frames between the monthly smoothed maps. Thus the

smoothing in space and in time are independent of each other. The single frame corresponding to

December 1986 is displayed in Figure 5.12.

5.6.3 Detecting Disease Outbreaks

As an alternative to showing the incidence of the disease we considered inspection of the residuals

from a simple statistical model. This approach was intended to emphasize outbreaks of the disease

and mask normal patterns such as seasonal variations and different reporting practices across the

states.

In this video we considered the later period of the disease (1980-1988) when the incidence rates

have stabilized after the steep drop that was caused by the introduction of vaccination programs at

the end of 1960’s.

Let zij be the logarithm of the reported incidence rates in statei for monthj (We added 1 before

taking logarithm to avoid problems with zero incidence rates). We used median polish to fit state

effectssiand time effectstj . The residuals

ηij = zij − si − tj
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Figure 5.12: Smoothed incidence rates in December 1986

for any particular state looked like a stationary time series except for one or two peaks caused by

larger outbreaks.

To emphasize the outbreaks we smoothed out the “small” noise leaving only extreme peaks. We

defined anηij to be unusual if it was in the upper0.95 quantile of the residuals. We then applied

running medians of size 3 in time for every state to the residuals that were not considered unusual,

i.e. we chose

η̂ij =

 Median(ηij : |j − k| ≤ 3) if ηij was not unusual

ηij otherwise.

The resulting animation identifies what one could define as an outbreak of the disease without

confusing the scene with the seasonal and between state effects.

5.7 Discussion

Mumps in the US is a seasonal disease. The peak occurs in early spring, while the lowest incidence

rates can be observed in autumn. As most of the cases are school age children, this can be in part

explained by the school year. Over a longer period the mumps disease had a high incidence rate

before the vaccination programs started around 1970. By 1980 these vaccination programs almost

completely eradicated the disease, leaving only a few cases per state per month. Some states ceased

mandatory vaccination programs at about that time and strong outbreaks of the disease occurred

in 1986-1987, primarily among unvaccinated adolescents and young adults in those states. These
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statements are clearly supported by the graphs in Figure 5.1 of the logarithm of the incidence rates

in California and Wisconsin. We can see seasonal periodicity (high in spring and low in autumn)

and an outbreak in Wisconsin in the second half of eighties.

Annual periodicity in the incidence rate for mumps can be observed in both the raw data videos

and the smoothed versions. The periodic effect is particularly striking in the early years of the data

set, before the widespread use of the mumps vaccine reduced the typical monthly incidence rate

below .1 (cases per 100,000 people). However, the effect can be discerned throughout the data set,

especially in the smoothed version.

The geographic spread of mumps cannot be easily discerned in the raw data; however, repeated

viewing eventually allows one to make such an interpretation. The effect is probably most noticeable

in the winter of 1987-1988 in the states surrounding Illinois. In the smoothed data the geographic

spread of the disease is readily apparent. This is particularly clearly visible during the late winter

of 1986-87 when the disease spreads from Illinois to Arkansas and Tennessee and in the subsequent

winter when the disease spreads to all the neighboring states.

5.8 Summary

In this chapter animation of mumps incidence rates in the United States was considered. First we

described the data which represents counts of the disease for each state for every month from Jan-

uary, 1968 until December, 1988. The data indicate a strong seasonal trend that could be explained

by a school year and a decreasing trend due to introduction of the mumps vaccine at the beginning

of considered period.

In Section 5.4 the techniques used to animate space time data were discussed. The main features

were the mapping of numeric values into color space and the importance of smoothness of the

animation in spatial and temporal domains. Some techniques to reduce the amount of computations

were also discussed.

In Section 5.5 the results from Chapters 2, 3, and 4 were applied to mumps data. First we

considered how the kernel smoothing method described in Chapter 4 can be used to obtain a smooth

function of mumps incidence rates over the territory of the United States. Then we estimated the

dependence structure of the incidence rates process using methods from Chapters 2 and 3.

In Section 5.6 we describe successively smoother animations of the mumps incidence rates

recorded on a videotape. The last animation illustrates a method to detect outbreaks of a disease.
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Contributions and Future Work

The contributions can be shortly summarized by the following list:

1. Estimating dependencies of a spatial process given its integrals.

2. Prediction given integrals.

3. Animation of disease maps.

The real-life data can be often modeled as averages over various regions of some space-time

process. The nature of such process is often stochastic and to perform a reasonable statistical analy-

sis we need to get empirical evidence about process dependence structure. The estimation of the the

dependence structure of spatial process from aggregate data was not considered before. In Chapter 2

we proposed to estimate an isotropic covariance function of spatial process from integrals of that

process.

Having dependence structure of the discussed process we can proceed with various types of

prediction. Prediction from aggregate data is somewhat different from prediction using point ob-

servations. We discuss such specifics and present a new simple to use procedure to predict from

aggregate data in Chapter 4. This procedure is computationally similar to kernel smoothing meth-

ods.

We applied the developed theory and algorithms to animate the spread of mumps in the continen-

tal United States. The developed methodology can be used to animated other (similarly widespread)

diseases. We now have available data for other 19 notifiable diseases for the period from January

1962 until December 1992. Unfortunately, only three of those diseases are relatively widespread,

other are extremely rare.

67
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Directions for the future work are

1. Generalizations of the covariance function estimation:

(a) develop an effective procedure to estimate the covariance function when the data repre-

sents integrals over regions of general form in higher than two dimensions.

(b) develop a method to estimate a generalized covariance functions (not only variogram

and covariogram).

(c) Prove asymptotic properties, e.g., almost sure consistency.

2. Improve prediction theory:

(a) investigate theoretic properties of the kernel type estimators.

(b) finding the optimal kernels corresponding to the estimated covariance function.

(c) obtain uncertainty in prediction due to uncertainty in the estimate of the covariance

function.

3. Apply the developed techniques on other datasets.

4. Develop Bayesian and likelihood approach in estimating dependencies and obtaining predic-

tive distributions.
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Appendix A

Appendix

A.1 Integral Equations for Variogram

Let f(x) be a zero mean stochastic process onRd. If a quantityρ(u, v) = E((f(u) − f(v))2) is

finite and is only a function ofu− v, i.eρ(u, v) = ρ(u− v) then we say thatf has variogramρ.

The process having a variogram can be non-stationary, while for a stationary process the vari-

ogram always exists.

Using the notation from Section 2.2 we will express the expected value of(zi− zj)2 in terms of

the variogram.

E((zi − zj)2) =

E

(∫
Ai

∫
Aj

f(u)− f(v)dudv

)2


= E

[∫
Ai,Aj ,Ai,Aj

(f(u1)− f(v1)(f(u2)− f(v2)du1 . . . dv2

]

= E

∫
Ai,Aj ,Ai,Aj

∑
k,l=1,2

(−1)k−lf(xk,1)f(xl,2)du1 . . . dv2


= −E

1
2

∫ ∑
k,l=1,2

(−1)k−l ((f(xk,1)− f(xl,2)))
2 du1 . . . dv2


+E

1
2

∫ ∑
k,l=1,2

(−1)k−l
(
f(xk,1)2 + f(xl,2)2

)
du1 . . . dv2


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= −1
2

∫
Ai,Aj ,Ai,Aj

∑
k,l=1,2

(−1)k−lρ(xk,1 − xl,2)du1 . . . dv2 (A.1)

Now we can use sample values(zi − zj)2 to solve Equation (A.1) forρ.

A.2 Kinematic Measure

Here I will follow Santalo 1976 pp. 80–92 and Bonnensen and Frenchel 1987 pp. 74-75. First lets

consider a simple example.

Example 2: Let K be any ordered pair of points(a,b) in R2 with a fixed distance

apart‖a− b‖ = l (an oriented stick). The movements of the stick can be parametrized

in terms of the displacementq of its first enda and by rotationα with respect to its

original orientation. The new Cartesian coordinates for the ends of the stick after the

movement(q, α) are (a + q,a + q + (l cos(α), l sin(α))) assuming that the vector

b− a was oriented in the direction ofx coordinate axis.

We might be interested in some subset of all possible movements of the stick (all pos-

sible movements areq ∈ R2, α ∈ [0, 2π)). For example, we consider all movements

of the stickK such that it has first end inside a circle with radiusr and center at the

origin. Using the parametrizations of the movements we need to find all pairsq, α so

that ‖a + q‖ < r andα ∈ [0, 2π). Integrating all those movements with respect to

dqdα we get the “measure” of all such movements to be2πr2 × 2π

Let a setM of geometric objects be given. For example, a set of points, a set of lines in plane

or in space, a set of planes, a set of point pairs with a fixed distance, etc. To such a set we assign

a “measure”. Let an element ofM (point, line, plane) be determined by independent coordinates

(α1, . . . , αk). Letf(α1, . . . , αk) or brieflyf(α) be an (initially arbitrary) positive function ofα. By

the measureµ(M) of M we mean the integral
∫
f(α)dα extended overM (M andf are supposed

to be such that this integral is meaningful). The usual condition imposed on the arbitrary “density

function” f is that the measure of a setM remains unchanged under motions. In other words: If the

setM goes toM by means of a motion, then we should haveµ(M) = µ(M). This requirement

identifies functionf up to an arbitrary positive factor, for sets of points, lines, and planes.

We will consider points and sets of points on the Euclidean plane with rectangular system of

Cartesian coordinates. A motion is defined as a transformation of the plane onto itselfu : P (x, y) →
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P ′(x′, y′) represented by the equations

x′ = x cosφ− y sinφ+ a

y′ = x sinφ+ y cosφ+ b

wherea, b, φ are parameters that have the following respective ranges:

−∞ < a <∞, −∞ < b <∞, 0 ≤ φ ≤ 2π.

Let a pair of pointsA,B with a fixed distancel apart (we will refer to it as “a segment”) be

given. Letx, y be Cartesian coordinates of the pointA andα be the angle between the ray
−−→
AB and

the~x axis of the coordinate system. Three components(x, y, α) will fully specify the position of

the oriented segmentAB.

A kinematic density functionf (of the segmentAB) invariant under the motionu would satisfy

the equation ∫
M
f(x, y, α)dxdydα =

∫
M ′
f(x, y, α)dxdydα (A.2)

whereM ′ is obtained fromM by means of the motionu

x′ = x cosφ− y sinφ+ a

y′ = x sinφ+ y cosφ+ b

α′ = (2π + α− φ) mod 2π

Arbitrariness of the movementu and Equation (A.2) imply thatf(x, y, α) is a constant. So the

kinematic density for the segment is a constant.

To determine that constant and obtain relation to the weight functionWAiAj (l) consider trans-

formation of variables in Equation (2.4). The transformation is from Cartesian coordinates(x1, y1, x2, y2)

to the coordinates(x1, y1, l, φ), wherel = ((x1−x2)2+(y1−y2)2)
1
2 , φ = tan((y1−y2)/(x1−x2)).

The Jacobian is ∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0

0 1 0 1

0 0 cos(φ) −l sin(φ)

0 0 sin(φ) l cos(φ)

∣∣∣∣∣∣∣∣∣∣∣
= l (A.3)

LetA∩B = ∅ and letM(l, A,B) be the measure of all movements of an oriented line segment

of lengthl with one end in the setA and the other in the setB. Letu = (x1, y1), v = (x2, y2) then
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using Equation (A.3) we get

WAA(l) =
∫
u∈A,v∈A,‖u−v‖=l

dudv

=
∫
(x1,y1)∈A,(x1+l cos(φ),y1+l sin(φ))∈A

ldx1dy1dφ

= M(l, A,A)l, (A.4)

WAB(l) =
1
2

(∫
u∈A,v∈B,‖u−v‖=l

dudv +
∫
u∈B,v∈A,‖u−v‖=l

dudv

)

=
1
2

∫
(x1,y1)∈A,(x1+l cos(φ),y1+l sin(φ))∈B

ldx1dy1dφ

+
1
2

∫
(x1,y1)∈B,(x1+l cos(φ),y1+l sin(φ))∈A

ldx1dy1dφ

= M(l, A,B)l/2, A ∩B = ∅ (A.5)

the two cases are different because obtainingW (Equation (1.1)) we specify which end of the

segment is in which set.

A.3 A Segment Intersecting Two Other Segments

Equation (3.5) is obtained in Santalo 1976. Equations (3.6) and (3.7) are obtained similarly, so I will

derive only equation (3.6). For Equation (3.6) I will consider the situation as shown in Figure A.1.

I will first fix angleφ or π−φ the segmentK has with rayR(A∞) and calculate the measure of all

non-rotational movementsM(φ) (for two fixed orientation ofK) so that the segment crosses rays

R(A∞) andR(OG). Then I will integrate theM(φ) + M(π − φ) = 2M(φ) over the range of

possible values forφ whenφ ⊂ [0, π].

From Figure A.1,M(φ) is equal to the area of the trianglêEFG. So 2M(φ) = (|AF | −
|AE|)|AH| sin(φ). In the notation of Equation (3.6):

|OA| = l2

|AF | = |HG| = l

|OH| sin(α) = |HG| sin(φ− α)

|OA|/|OH| = |AE|/|HG|

Using those equations we get

(|AF | − |AE|)|AH| = (|AF | − |AE|)(|OH| − |OA|)

= ll2(1− C)(1/C − 1),
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Figure A.1: The area of the filled trianglêEFG is the measure of all non-rotational movements of
the segmentK when it intersectsR(A∞) andR(OG)

where

C = |OA|/|OH| = l2/|OH|

= l2/ (|HG| sin(φ− α)/ sin(α))

=
l2 sin(α)

l sin(φ− α)

and hence

2M(φ) = sin(φ)
(
l − l2 sin(α)

sin(φ− α)

)(
l sin(φ− α)

sin(α)
− l2

)
, (A.6)

and integrand in Equation (3.6) follows.

To get the limits of integration in Equation (3.6) consider extreme orientations of the segment

K when it can intersectR(A∞) andR(OG). Minimal angleφ0 can be obtained using equation

l2 sin(α) = l sin(φ0 − α), and maximal angleφ1 is eitherπ (if l2 < l) or π − φ0.

A.4 Consistency of the Step Estimators

Let f(x) be a stationary zero-mean stochastic process onR2 with an isotropic covariance functionγ

(i.e.,γ(x1, x2) = γ(‖x1 − x2‖) is a function of the distance betweenx1 andx2). The observations
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zi of this process have following form:zi =
∫
Ai
f(x)dx, whereAi, i = 1, . . . , N partition region

A.

Let lk, k = 0, . . . ,K be an ordered sequence of real numbers withl0 = 0. A piecewise constant

estimator̂γ(l) =
∑
k γkI[lk,lk+1)(l) of the covariance function is given by following equation:

γ̂ = arg min
γ

∑
i,j

(
Cij(zizj −

∫
γ(l)Wij(l)dl)

)2

(A.7)

whereCij are weights (for example,Cij = 1
SAi

SAj
whereSAi is the area of the regionAi) and

W is defined by Equation
∫
A

∫
B dudv =

∫∞
0 WAB(l)dl for any two setsA andB. Let pij,k =

Cij
∫ lk+1

lk
Wij(l)dl andZij = Cijzizj . Then Equation (A.7) can be rewritten as

arg min
γk, k=1,...,K

∑
i,j

(
Zij −

∑
l

γlpij,l

)2

(A.8)

The solution to this quadratic minimization problem is the same as the solution to the system of

linear equations (we assume the matrixP TP to be invertible)

P TPγ = P TZ, (A.9)

where the vectorγ = (γl), the matrixP = (pij,l) (note, thatij is an index for rows andl is an index

for columns), and the vectorZ = (Zij).

We will consider asymptotic behavior of a sequence of estimatorsγ(q) asq → ∞. To simplify

the notation we will omit the index(q) in this sequence. All asymptotic conditions will be given in

terms of this implicit index(q).

The unique solution to Equation (A.9) is(P TP )−1P TZ if P TP is invertible. LetM =

(P TP )−1P T . The expected value of

E (γ) =
(
P TP

)−1
P TE (Z)

= M

∫
(CijWij (l)) γ (l) dl

= M
∑
k

∫ lk+1

lk

(CijWij (l)) γ (l) dl

= M
∑
k

∫ lk+1

lk

(CijWij (l)) (γ(lk) + ξk(l)) dl

= M
∑
k

(pij,k) γ (lk) +M
∑
k

∫ lk+1

lk

(CijWij (l)) ξk (l) dl

=
(
P TP

)−1
P TP (γ(lk)) +M

∑
k

∫ lk+1

lk

(CijWij (l)) ξk (l) dl (A.10)
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whereξk(l) = γ(lk)− γ(l). Let ξk = suplk<l<lk+1
|ξk (l) | then ifmaxk ξk <∞

|E(γk)− γ(lk)| < ξk (A.11)

In particular, whenγ(l) satisfies a Lipschitz condition (i.e., there exist a constanth < ∞ such

that for ∀ε > 0 ∃δ > 0 : ∀l and ∀x < δ, |γ(l) − γ(l + x)| < hε), P TP is invertible, and

maxk(lk+1−lk) → 0 the estimator is asymptotically unbiased as stated in the following Proposition.

Proposition A.4.1 Let γ(l) satisfy a Lipschitz condition,(P (q))TP (q) be a sequence of invertible

matrices,lim(q) maxk(l
(q)
k+1 − l

(q)
k ) = 0, l(q)K ≥ lK , andl(q)0 ≤ l0. ThenlimE(γ̂(q)(l)) = γ(l) for

anyl0 < l < lK

The covariance matrix for the estimatorγ is

E
(
γγT

)
− E (γ)E

(
γT
)

= E
(
MZZTMT

)
−ME (Z)E

(
ZT
)
MT

= E

(
MPP−ZZT

(
P T
)−

P TMT
)
−MPP−E (Z)E

(
ZT
) (
P T
)−

P TMT

= E

(
P−ZZT

(
P T
)−)

− P−E (Z)E
(
ZT
) (
P T
)−

=

 ∑
(ij),(mn)

p−ij,kp
−
mn,lE (ZijZmn)

−

 ∑
(ij),(mn)

p−ij,kp
−
mn,lE (Zij)E (Zmn)


=

 ∑
(ij),(mn)

p−ij,kp
−
mn,l (E (Zim)E (Zjn) + E (Zin)E (Zjm))


whereP− =

(
p−ij,k

)
is Moore-Penrose inverse of the matrixP . The last equality was obtained

using a formula for the fourth centered moment of the multivariate normal distribution (see, e.g.,

Anderson pp. 39).
The quantity∑

(ij),(mn)

p−ij,k1
p−mn,k2

E(Zim)E(Zjn) =
∑

(ij),(mn)

p−ij,k1
p−mn,k2(∑

k

pim,kγ(lk) +

∫ lk+1

lk

CimWim(l)ξk(l)dl

)(∑
k

pjn,kγ(lk) +

∫ lk+1

lk

CjnWjn(l)ξk(l)dl

)
(A.12)

is the first term of the the covariance betweenγk1 andγk2 (the second term has the same expression
only the subscriptim is changed toin and the subscriptjn is changed tojm. If γ(l) satisfies a
Lipschitz condition andmaxk(lk+1 − lk) = 0, the expression A.12 can be simplified as the term
includingξk(l) is much smaller than the term includingγ(l). The result is:∑

(ij),(mn)

p−ij,k1
p−mn,k2

E(Zim)E(Zjn) ≈
∑

(ij),(mn)

p−ij,k1
p−mn,k2

(∑
u

pim,uγ(lu)

)(∑
v

pjn,vγ(lv)

)
(A.13)
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Proposition A.4.2 Let γ(l) satisfy a Lipschitz condition,(P (q))TP (q) be a sequence of invertible

matrices,lim(q) maxk(l
(q)
k+1 − l

(q)
k ) = 0, l(q)K ≥ lK , l(q)0 ≤ l0, and the sum

∑
(ij),(mn),u,v

p
(q)−
ij,k1

p
(q)−
mn,k2

(
p
(q)
im,up

(q)
jn,v + p

(q)
in,up

(q)
jm,v

)
γ(l(q)u )γ(l(q)v )

tends to zero asq →∞.

Then the covariance of the estimatorlimq→∞Cov(γ̂(q)(l1), γ̂(q)(l2)) = 0 for anyl0 < l1, l2 <

lK .

To investigate the last condition in the proposition we need to discuss properties of the matrix

P which depend on the geometry of regionsAi. We will use two measures for the size of a region

in Rn.

Definition A.4.3 The outer diameter (or diameter) of a regionA is

D(A) = sup
x∈A,y∈A

‖x− y‖

where‖ · ‖ is Euclidean distance. In words: the outer diameter ofA is the diameter of the smallest

sphere containingA.

The inner diameter of a regionA is

d(A) = sup
c(R)⊂A

R

wherec(R) is a sphere of diameterR in Rn. In words: the inner diameter ofA is the diameter of

the largest sphere contained inA.

The inner distance betweenA andB is

d(A,B) = inf
x∈A,y∈B

‖x− y‖.

The outer distance betweenA andB is

D(A,B) = sup
x∈A,y∈B

‖x− y‖.

LetD = maxiD(Ai), andd = mini d(Ai).

We will assume several conditions on the asymptotic behavior of the regions and on the smooth-

ness of the covariance function. Those assumptions can be relaxed.
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1) γ satisfies a Lipschitz condition. It is a sufficient condition for the sample paths to be differ-

entiable (see, e.g., Cramer and Leadbetter, pp. 125).

2) lK/d(A) → 0.

3) D → 0.

4) D/d = O(1).

5) maxk(lk − lk−1) → 0.

6) D
mink(lk−lk−1) → 0

Condition (1) and (5) together with Equation (A.11) imply asymptotic unbiasedness.

To prove consistency we need to show that the variance ofγk goes to zero.

Condition (6) makes the matrixP TP asymptotically tri-diagonal aspij,kpij,l 6= 0 only when

|k − l| ≤ 1. The non-diagonal elements are small, soγk ≈
∑

ij
pij,kZij∑

ij(pij,k)2 and

E
(
γ2
k

)
− E(γk)2 =

1
(
∑
ij pij,k)2

∑
ij,mn

pij,kpmn,kE (ZijZmn)− E(Zij)E(Zmn)

≈ 1/C2
∑

ij,mn,v,u

pij,kpmn,k (pim,upjn,v + pin,upjm,v) γ(lu)γ(lv)

whereC = 1

(
∑

ij(pij,k)2
)
. Compare this expression with Equation A.13. Now we will show that

1/C2
∑

ij,mn,v,u

pij,kpmn,kpim,upjn,vγ(lu)γ(lv) (A.14)

tends to zero under the conditions (1)-(6). The basic idea is that the matrixpim,u contains mostly

zero entries. As the covariance function is bounded (it is automatically bounded when it satisfies a

Lipschitz condition) it is enough to show that the sum given by1/C2∑
ij,mn,v,u pij,kpmn,kpim,upjn,v →

0. Condition (6) implies that the matrixpij,k has no more than three nonzero entries in one row (the

rows are indexed byij), Condition (2) implies that most of the rows are all zeros as only the rows

corresponding to the pairs of regions that haveD(Ai, Aj) < lK can have nonzero entries. If the

total number of regions isn, then the bounds on the number of pairs of regions satisfying this condi-

tion are fromn× (πl2K/D
2) ton× (l2K/d

2), i.e., for each regionAi we draw a circle with radiuslK

and the smallest region has diameterd so there are no more thanπl2K/
πd2

4 regions inside this circle.

The biggest region has diameterD so there are no less than(πl2K/D
2) regions inside the circle.
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When we take the product
∑
ij,mn,v,u pij,kpmn,kpim,upjn,v we can just sum only over the set

of indexesij andmn such thatD(Ai, Aj) < lK andD(Am, An) < lK . In addition, we are can

restrict the sum to terms when
∑
u pim,u 6= 0 and

∑
v pjn,v 6= 0. Those we have four conditions for

a term indexed by(ij,mn) to be nonzero:D(Ai, Aj) < lK , D(Am, An) < lK , D(Ai, Am) < lK ,

D(An, Am) < lK . We can calculate that there are no more thann× 4l2K/d
2× 4l2K/d

2× 4l2K/d
2 =

n
(

4lK
d

)6
terms that are nonzero, i.e., we can taken different regionsAi and for each regionAi there

are no more than4l2K/d
2 regionsAj distancelK or less away , and no more than4l2K/d

2 regions

Am distancelK or less away. For each tripletAi, Aj , Am there are no more than4l2K/d
2 regions

An distancelK or less away from bothAm andAj . The sum in the divisorC2 =
(∑

ij (pij,k)
2
)2

=∑
ij,mn (pij,k)

2 (pmn,k)
2 has no less than(n×(πl2K/D

2))2 = π2n2
(
lK
D

)4
nonzero terms. The ratio

of the number of nonzero terms in the numerator and the denominator of Equation (A.14) tends to

zero

n
(

4lK
d

)6

π2n2
(
lK
D

)4 =
44

π2

4l2K/d
2

n

D4

d4

<
46

π2

l2K/d
2

d(A)2/d2

D4

d4

=
46

π2

l2K
d(A)2

D4

d4
→ 0. (A.15)

using Condition (2). To conclude the proof that Equation (A.14) tends to zero we notice that the

number of terms in theC that are not of the order of1 (for Cij = 1/(SAiSAj )) is negligible

with respect to the total number of terms. The termpij,k = Cij
∫ lk+1

lk
WAiAj (l)dl . The quan-

tity
∫ lk+1

lk
WAiAj (l)dl = SAiSAj if D(Ai, Aj) ≤ lk+1 andd(Ai, Aj) ≥ lk. For such pairs of

regions takingCij = 1/(SAiSAj ) the pij,k = 1. When0 < pij,k < 1 we must have asymp-

totically D(Ai, Aj) ≥ lk+1 andd(Ai, Aj) ≤ lk+1 or D(Ai, Aj) ≥ lk andd(Ai, Aj) ≤ lk as

D/maxk(lk+1 − lk) → 0 by condition (5). The number of pairs of regions tat satisfy either re-

lationship is no more than
∑
k

(
(lk +D)2 − (lk −D)2

)
/d2 = 4D

∑
k lk/d

2 < 4DKlK/d2. The

total number ofpij,k > 0 is no less thanπl2K/D
2. So the ratio is no greater than4DKlK/d

2

πl2K/D
2 =

4/π D
lK/K

D2/d2 > 4/π D
mink(lk+1−lk)D

2/d2 → 0 by Condition (6).
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Appendix

B.1 Software to Calculate the Weight FunctionsW

The weight functionW is important when estimating a covariance function or simulating integrals

of a stochastic process when the covariance function is known. The functionW is defined as the

following integral:

WAB(l) =
∫
u∈A,v∈B,‖u−v‖=l

dudv

The functionWAiAj (t) is obtained using Theorem 3.5.4, and Equations (3.9, 3.5, 3.6, 3.7, 3.8). The

functionKMeasure(l, NA, NB, ∂A, ∂B) (in file geom.cc) calculates a kinematic measure of a line

segment of lengthl with its first endpoint inside the setA and the second endpoint inside the setB.

This quantity is exactlyWAB(l)/l. The function requires that eitherA ∩ B = ∅ or thatA = B.

The simple generalization of the function for arbitrary two setsA andB can be implemented using

Theorem 3.5.4.

The precision (and correctness) of the code can be checked using the relationship:∫ ∞

0
WAB(l)dl = SASB

whereSA, SB are areas of the polygonsA,B. Those areas can be calculated exactly and compared

with the integral on the left. We took two maps of the continental United States (Figures 5.4,

and 5.5). Both maps contain 49 regions (there are two separate regions for Michigan state) and we

computed all49(491)/2 = 1225 different integralsIij =
∫ bij
aij

WAiAj (l)dl and compared them to the

exact valuesSAiSAj . The boundaries for the integration were takenaij = infu∈Ai, v∈Aj ‖u−v‖ and

bij = supu∈Ai, v∈Aj
‖u− v‖. The integrals were computed using Gauss quadrature with Legendre

83
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Percentile 0 25 50 75 100
Figure 5.5 -0.00821244 -2.04368e-05 8.01375e-07 2.33429e-05 0.00302665
Figure 5.4 -0.00263325 -1.27446e-05 -2.73902e-08 1.02901e-05 0.00392718

Table B.1: Percentiles of the relative error

weights (software to compute those quadratures can be obtained from netlib using commandecho

"send gaussq from go" | mail netlib@ornl.gov ) using 81 points to evaluate the

integral. Several percentiles of the relative error
Iij−SAi

SAj

SAi
SAj

(from a sample of 1225) are in Table B.1

B.2 Software to Estimate a Covariance Function

The software is designed to estimate the covariance of an isotropic zero mean stationary process

in R2 given integralszi of the processf over disjoint regionsAi. In practice the “zero mean” is

achieved by removing the trend via local or global averages (see Chapter 4).

The calculations are done in two steps. The first step requires borders of the regionsAi and

pre-calculates the quantitiesW k
ij = WAiAj (lij,k) for a set of valueslij,k defined by Gauss-Legendre

quadrature on intervals[infu∈Ai, v∈Aj ‖u− v‖, supu∈Ai, v∈Aj
‖u− v‖].

In the next step of the program we take the valueszi, lij,k, andW k
ij and solve Equation (2.7).

The minimization is performed as follows:

1. Initial point η0 is chosen to be used in the next step by the local minimization procedures.

The point is chosen by using “bayes1” global minimization routine (see Mockus (1989)).

2. Two different local optimization procedures are then used to improve the estimate. The first

procedure uses NLPQL algorithm described in Schittkowski 1986 and the second procedure

uses quasi-Newton method (see, e.g., Dennis and Schnabel (1983)) and active set strategy

(see, e.g., IMSL (1991)).

3. The best result (the one that minimizes the sum of squares) is chosen.

B.2.1 Forms of the Covariance Function

The various parametric and nonparametric forms of the isotropic covariance function are described

in Section 2.2 and Section 2.3.1.



Appendix C

Code Listing

C.1 kmeasure.h

#ifndef KMEASUREH

#define KMEASUREH

# define M PI 3.14159265358979323846

/∗ A measure of a segment l

∗ intersecting parallel segments l1 and l2

∗ which are distance d apart and shifted by s

∗/
double parallelM (double l, double l1, double l2, double d, double s); 10

/∗ A measure of a segment l intersecting two rays

∗ starting at the same point with an angle alpha

∗/
double fullM (double l, double alpha);

/∗ The same as fullM, but we remove pieces of each ray of length

∗ l1 and l2 correspondingly. The removed pieces start at the origin.

∗/
double OutMeasure(double l, double l1, double l2, double alpha); 20

inline double dmin (double a, double b){ if (a < b) return a; else return b; }
inline double dmax (double a, double b){ if (a > b) return a; else return b; }

85
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#endif

C.2 geom.h

#ifndef GEOM H

#define GEOM H

typedef struct {
int x, y;

} intPoint;

#ifdef cplusplus

extern "C" {
#endif 10

/∗ Calculate Kinematic measure of the movements of an oriented segment of

∗ length l so that it starts and ends within nonintersecting

∗ polygons a and b accordingly.

∗ All polygons must have boundary vertices with same (clockwise

∗ or counter-clockwise) orientation.

∗/
double KMeasure (double l, int an, int bn, intPoint ∗ a, intPoint ∗ b);

/∗ Area of the region∗/ 20

double area (int NPoints, intPoint ∗ p);

/∗ Perimeter of the region∗/
double perimeter (int NPoints, intPoint ∗ p);

/∗ Is the boundary of the region clockwise?∗/
int isClockwise (int NPoints, intPoint ∗ p);

/∗ Inner distance between the curve a and the curve b∗/
double innerDistance (int na, int nb, intPoint ∗ a, intPoint ∗ b); 30

#ifdef cplusplus

}
#endif
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#ifdef cplusplus

#include "kmeasure.h"

inline double distance2 (intPoint& a, intPoint& b) 40

{
return (a .x − b .x) ∗ (a .x − b .x) +

(a .y − b .y) ∗ (a .y − b .y);

}

class Point {
public:

double x, y;

Point (double xx=0, double yy=0) { x = xx; y = yy;};

Point (Point& p) { x = p .x; y = p .y;}; 50

Point (intPoint& p) { x = p .x; y = p .y;};

Point operator− (Point& p) { Point ans (x − p .x, y − p .y); return ans; };

Point operator+ (Point& p) { Point ans (x + p .x, y + p .y); return ans; };

int operator== (Point& p) { return (x == p .x && y == p .y);};

int operator> (Point& p) { return (x >= p .x) && (y >= p .y);};

int operator< (Point& p) { return (x <= p .x) && (y <= p .y);};

double norm () { double tmp = (x∗x + y∗y); return tmp; };

double operator∗ (Point& p) { return (x ∗ p .x + y∗ p .y); };

int between(Point& a, Point& b); 60

};

class Line{
public:

double a, b, c;

Line (Point& a, Point& b);

Point intersect (Line& line);

int parallel (Line& line);

double distance (Point& point);

}; 70

class Segment{
public:

Point from, to;

Segment(Point& f, Point& t) : from (f ), to (t) {;};
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double innerDistance (Point& p);

double outerDistance(Point& p);

double innerDistance (Segment& s);

double outerDistance(Segment& s); 80

};

double KMeasureSegment(double l, Segment& a, Segment& b);

int Between(Point& O, Point& a, Point& b);

#endif

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

#define MAX(a, b) (((a) < (b)) ? (b) : (a))

90

#endif

C.3 A.h

#ifndef A H

#define A H

void quadrature (double x1, double x2, double ∗x, double ∗w, int n);

typedef struct {
int nPoints;

int minX, minY, maxX, maxY;

intPoint ∗ line;

} Border; 10

class Covariance {
public:

int type; // 0 for sigma ê (alpha x),

// 1 for step function

int nBins;

double range, ∗ values;

double alpha, sigma;
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Covariance (double alp=−1, double sig = 1); 20

Covariance (int nBin, double rang, double ∗ vals)

{type = 1; nBins = nBin; range = rang; vals = values;};

double operator ()(double x);

};

class A {
private:

double (A:: ∗measure) (double x);

double pureMeasure(double x);

double convol (double x); 30

public:

int i, j;

int nRegions;

Border ∗ border;

double ∗ areas;

double SCALING; // The constant (Sum(areas)ˆ (3/2)) to keep the

// weights (array Values) invariant to the scaling

// To get unscaled version multiply Values by SCALING.

int minX, minY, maxX, maxY;

40

double ∗∗ Values;

double ∗∗ xes, ∗∗ wus;

double diam;

int nCells;

Covariance ∗ gamma;

A (char ∗ fname, int pure = 1, int preCalculate = 1); 50

void writeW (char ∗ fname);

void readW (char ∗ fname);

double kmeasure(double x) {return (this −>∗measure) (x);};

double qgaus (double a, double b, int n = 30);

double qfast (void);

};

Point Range(Border& a, Border& b); 60
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#endif

C.4 kmeasure.cc

#include <stream.h>

#include <math.h>

#include <float.h>

#include "kmeasure.h"

/∗ A measure of a segment l

∗ intersecting parallel segments l1 and l2

∗ which are distance d apart and shifted by s

∗/
double parallelM (double l, double l1, double l2, double d, double s) 10

{
if (l <= d | | l1 == 0 | | l2 == 0)

return 0;

if (d == 0){
double x = dmin (l1, s+l2) − dmax (0, s);

if (x <= 0)

return 0;

else

return 4 ∗ x ∗ l;

} 20

if (l1 > l2){// make sure l1< l2

double tmp = l2;

s = l2 + s − l1;

l2 = l1;

l1 = tmp;

}
if (s + l2/2 < l/2)// Make sure the middle of l2 is to the right

// of the middle of l1

s = (−s + l1) − l2;

30

double phi0 = asin (d/l);

double phi1 = M PI − phi0;
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double phiA, phiB, phi0MinAB, phiMaxAB1;

double ans = 0;

phi0MinAB = M PI/2 − atan2 (s + l2, d);

phiMaxAB1 = M PI/2 − atan2 (s − l1, d);

if (phiMaxAB1 <= phi0 | | phi0MinAB >= phi1)

return 0; 40

phiA = M PI/2 − atan2 (s, d);

phiB = M PI/2 − atan2 (s + l2 − l1, d);

phi0 = dmax (phi0, phi0MinAB);

phi1 = dmin (phi1, phiMaxAB1);

double cosphi0 = cos (phi0);

double sinphi0 = sin (phi0);

double cosphi1 = cos (phi1);

double sinphi1 = sin (phi1); 50

if (phi0 > phiA){
//readlibreadlib(C):

//int int((l∗sin(p)-d)∗(l∗cos(p)-s1),p=phi0. .phi1);

double s1 = s−l1;

ans = −l∗l∗cosphi1∗cosphi1/2 +

l∗s1∗cosphi1−d∗l∗sinphi1 + d∗s1∗phi1 +

l∗l∗cosphi0∗cosphi0/2 − l∗s1∗cosphi0 +

d∗l∗sinphi0 − d∗s1∗phi0;

}else{// phi0<= phiA

if (phi0 < phiB){ 60

double s2 = s+l2;

double cosphiB = cos (phiB);

double sinphiB = sin (phiB);

//int int((l∗sin(p)-d)∗(s2-d∗cot(p)),p=phi0. .phiB);

ans = −l∗s2∗cosphiB − d∗l∗sinphiB

− d∗s2∗phiB + d∗d∗log(sinphiB)

+ l∗s2∗cosphi0 + d∗l∗sinphi0

+ d∗s2∗phi0 − d∗d∗log(sinphi0);

phi0 = phiB;

cosphi0 = cosphiB; 70

sinphi0 = sinphiB;

}// now phi0>= phiB;

//int int((l∗sin(p)-d)∗l1,p=phi0. .phiA);
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double cosphiA = cos (phiA);

double sinphiA = sin (phiA);

ans += −(l∗cosphiA+d∗phiA)∗l1+(l∗cosphi0+d∗phi0)∗l1;

double s1 = l1−s;

//int int((l∗sin(p)-d)∗(s1+d∗cot(p)),p=phiA. .phi1);

ans += −l∗s1∗cosphi1 + d∗l∗sinphi1

− d∗s1∗phi1 − d∗d∗log(sinphi1) 80

+ l∗s1∗cosphiA − d∗l∗sinphiA + d∗s1∗phiA

+ d∗d∗log(sinphiA);

}

if (ans < 0){
cerr << l << " " << l1 << " " << l2 << " " << d << " " << s;

cerr << " Less than 0 in parallelM " << ans << "\n" ;

ans = 0;

}
return 2∗ans; 90

}

static inline double closedForm (double l, double alpha, double li , double phi)

{
/∗ return 2∗l∗li ∗ (1+cos (phi)) - l∗l∗ (sin (phi)∗ sin (phi)/2 +

cos (alpha)/ sin (alpha)∗ sin (2∗phi) / 4) +

(li∗li ∗ sin (2∗alpha) + l∗l ∗ cos (alpha)/ sin (alpha))∗ phi / 2 +

li∗li ∗ sin (alpha)∗ sin (alpha)∗ log (sin (phi - alpha));

∗/
double cosP = cos (phi); 100

double sinP = sin (phi);

double cosA = cos (alpha);

double sinA = sin (alpha);

double ctgA = cosA/sinA;

double ll = l∗l;

double lili = li∗li ;

if (sinP∗cosA − sinA∗cosP < DBL EPSILON){
return 0;

} 110

return 2∗l∗li ∗ (1+cosP) − ll ∗ (sinP + ctgA∗cosP)∗sinP/2

+ (lili ∗ sinA∗cosA ∗ 2 + ll ∗ ctgA) ∗ phi / 2

+ lili ∗ sinA∗sinA ∗ log (sinP∗cosA − sinA∗cosP);

}
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/∗ A measure of a segment l intersecting two rays

∗ starting at the same point with an angle alpha

∗/
double fullM (double l, double alpha)

{ 120

double sinA = sin (alpha);

double cosA = cos (alpha);

return l ∗ l ∗ (1 + (M PI − alpha) ∗ cosA / sinA) / 2;

}

/∗ The same as fullM, but we remove pieces of each ray of length

∗ l1 and l2 correspondingly. The removed pieces start at the origin.

∗/
double OutMeasure(double l, double l1, double l2, double alpha)

{ 130

if ( (l1 + l2)/l < DBL EPSILON && alpha > DBL EPSILON) {
return fullM (l, alpha);

}
double cosA = cos (alpha);

double sinA = sin (alpha);

double phi10, phi11, phi20, phi21;

double FirstTerm = 0, SecondTerm= 0;

int noSecondTerm= 0;

if (cosA > 0){ // alpha< Pi/2

if (l2 ∗ sinA >= l | | l1 ∗ sinA >= l){ 140

return 0;

}else{
phi10 = asin (l2/l∗sinA) + alpha;

if (l1 > l2 ∗ cosA){
phi11 = alpha + atan2 (l2 ∗ sinA, l1 − l2 ∗ cosA);

}else{
if (l1 < l2 ∗ cosA − l∗sin(M PI/2 − phi10 + alpha)){

phi11 = M PI − phi10 + alpha + alpha;

noSecondTerm=1;

}else{ 150

phi11 = M PI + alpha − atan2 (l2 ∗ sinA, l2 ∗ cosA − l1);

}
}
if (phi11 > phi10 + FLT EPSILON)

FirstTerm = closedForm (l, alpha, l2, phi11) −
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closedForm (l, alpha, l2, phi10);

if (!noSecondTerm){
phi20 = asin (l1/l∗sinA) + alpha;

if (l2 > l1 ∗ cosA){ 160

phi21 = alpha + atan2 (l1 ∗ sinA, l2 − l1 ∗ cosA);

}else{
if (l2 < l1 ∗ cosA − l∗sin(M PI/2 − phi20 + alpha)){

phi21 = M PI − phi20 + alpha + alpha;

}else{
phi21 = M PI + alpha − atan2 (l1 ∗ sinA, l1 ∗ cosA − l2);

}
}
if (phi21 > phi20 + FLT EPSILON)

SecondTerm= closedForm (l, alpha, l1, phi21)− 170

closedForm (l, alpha, l1, phi20);

}
}

}else { // alpha> Pi/2

if (l2 >= l | | l1 >= l){
return 0;

}else{
phi10 = alpha + asin (l2 ∗ sin (M PI − alpha)/l);

phi11 = alpha + atan2 (l2 ∗ sinA, l1 − l2 ∗ cosA);

if (phi11 > phi10 + FLT EPSILON) 180

FirstTerm = closedForm (l, alpha, l2, phi11) −
closedForm (l, alpha, l2, phi10);

else

FirstTerm = 0;

phi20 = alpha + asin (l1 ∗ sin (M PI − alpha)/l);

phi21 = M PI + alpha − phi11;

if (phi21 > phi20 + FLT EPSILON)

SecondTerm= closedForm (l, alpha, l1, phi21) −
closedForm (l, alpha, l1, phi20);

else 190

SecondTerm= 0;

}
}
if (SecondTerm< 0 | | FirstTerm < 0){

cerr << l << " " << l1 << " " << l2 << " "

<< alpha << " " << FirstTerm << " " << SecondTerm<< " Less than 0\n" ;
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if (SecondTerm< 0)

SecondTerm= 0;

if (FirstTerm < 0)

FirstTerm = 0; 200

}
return FirstTerm + SecondTerm;

}

C.5 geom.cc

#include <stream.h>

#include <stdio.h>

#include <math.h>

#include <float.h>

#include "geom.h"

double distance (intPoint& a, intPoint& b)

{ 10

double tmp = (a .x − b .x)∗(a .x − b .x) +

(a .y − b .y) ∗ (a .y − b .y);

return sqrt (tmp);

}

// inner distance between point t and segment from-to

double innerDistance2(intPoint& t, intPoint& from, intPoint& to)

{
if (distance2 (to, from) < DBL EPSILON)

return distance2 (t, to); 20

double T = (t .x − from .x)∗(to .x − from .x) +

(t .y − from .y) ∗ (to .y − from .y);

if (T < 0)

return distance2 (from, t);

else{
double T = (to .x − t .x)∗(to .x − from .x) +

(to .y − t .y)∗(to .y − from .y);
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if (T < 0)

return distance2 (to, t);

else{ 30

double a2 = ((t .y − from .y)∗(to .x − from .x)−
(t .x − from .x)∗(to .y − from .y));

double tmp = fabs (a2) / distance2 (to, from);

return tmp;

}
}

}

// Inner distance between curve a and curve b

double innerDistance (int na, int nb, intPoint ∗ a, intPoint ∗ b) 40

{
double dist = distance2 (a [0], b [0]);

for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++){
double tmp = innerDistance2(a [i], b [j], b [(j+1)%nb]);

dist = dmin (dist, tmp);

}
for (i = 0; i < nb; i++)

for (int j = 0; j < na; j++){
double tmp = innerDistance2(b [i], a [j], a [(j+1)%na]); 50

dist = dmin (dist, tmp);

}
return sqrt (dist);

}

double Line::distance (Point& to)

{
double den = sqrt (a∗a + b∗b);

if (b != 0)

return (to .y ∗ fabs (b) + a ∗ to .x + c)/den; 60

return (to .x ∗ fabs (a) + b ∗ to .y + c)/den;

}

double Segment::innerDistance (Point& t)

{
double T = (t .x − from .x)∗(to .x − from .x) +

(t .y − from .y)∗(to .y − from .y);

if (T < 0)
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return sqrt ((from − t) .norm ());

else{ 70

double T = (to .x − t .x)∗(to .x − from .x) +

(to .y − t .y)∗(to .y − from .y);

if (T < 0)

return sqrt ((to − t) .norm ());

else{
double a2 = ((t .y − from .y)∗(to .x − from .x)−

(t .x − from .x)∗(to .y − from .y));

return sqrt (a2 ∗ a2 / (to − from) .norm ());

}
} 80

}

double Segment::outerDistance(Point& t)

{

double a1 = sqrt ((from − t) .norm ());

double a2 = sqrt ((to − t) .norm ());

return MAX (a1, a2);

}
90

double Segment::outerDistance(Segment& t)

{

double a1 = outerDistance(t .from);

double a2 = outerDistance(t .to);

return MAX (a1, a2);

}

double Segment::innerDistance (Segment& t)

{ 100

double a1 = innerDistance (t .from);

double a2 = innerDistance (t .to);

double a3 = t .innerDistance (from);

double a4 = t .innerDistance (to);

return MIN(MIN (a1, a2), MIN (a3, a4));

}

/∗ calculates counter-clockwise angle from the second

vector to the first vector
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∗/ 110

extern "C" double leftAngle (intPoint& a, intPoint& b)

{
double phi1 = atan2 ( a .y, a .x),

phi2 = atan2 (b .y, b .x), pi2 = 2 ∗ M PI;

if (phi1 < 0)

phi1 += pi2;

if (phi2 < 0)

phi2 += pi2;

if (phi1 < phi2)

return pi2 + (phi1 − phi2); 120

else

return phi1 − phi2;

}

extern "C" int isClockwise (int NPoints, intPoint ∗ p)

{
double area = 0.0;

int i;

for (i = 0; i < NPoints − 1; i++)

area += (p [i] .x ∗ p [i + 1] .y) − 130

(p [i + 1] .x ∗ p [i] .y);

area += (p [NPoints − 1] .x ∗ p [0] .y) − (p [0] .x ∗ p [NPoints − 1] .y);

area /= 2.0;

if (area > 0)

return 0;

else

return 1;

}

extern "C" double area (int NPoints, intPoint ∗ p) 140

{
double area = 0.0;

int i;

for (i = 0; i < NPoints − 1; i++)

area += (p [i] .x ∗ p [i + 1] .y) −
(p [i + 1] .x ∗ p [i] .y);

area += (p [NPoints − 1] .x ∗ p [0] .y) − (p [0] .x ∗ p [NPoints − 1] .y);

return fabs (area / 2.0);

}
150
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extern "C" double perimeter (int NPoints, intPoint ∗ p)

{
double perimeter = 0.0;

int i;

for (i = 0; i < NPoints−1; i++){
double dx = p [i] .x − p [(i + 1)] .x;

double dy = p [i] .y − p [(i + 1)] .y;

perimeter += sqrt (dx∗dx + dy∗dy);

}
double dx = p [NPoints−1] .x − p [0] .x; 160

double dy = p [NPoints−1] .y − p [0] .y;

perimeter += sqrt (dx∗dx + dy∗dy);

return perimeter;

}

// Calculate line (ax + by + c = 0) going through two distinct points

Line::Line (Point& p1, Point& p2)

{
a = p1 .y − p2 .y;

b = p2 .x − p1 .x; 170

c = p1 .x ∗ p2 .y − p2 .x ∗ p1 .y;

}

// Check if two lines are parralel

int Line::parallel (Line& l2)

{
double s = (a ∗ l2 .b − b ∗ l2 .a);

if (s == 0)

return 1;

else 180

return 0;

}

// Calculate Intersection of two lines

Point Line::intersect (Line& l2)

{
double den = a ∗ l2 .b − l2 .a ∗ b;

return Point ( (b ∗ l2 .c − l2 .b ∗ c)/den,

(c ∗ l2 .a − l2 .c ∗ a)/den);

} 190
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// Check if collinear point O is between a and b

int Point::between(Point& a, Point& b)

{
if ((∗this − a) .norm () + (∗this − b) .norm () < (a−b) .norm ())

return 1;

else

return 0;

} 200

// Calculate measure of a segment of length l intersecting segments

// a and b simultaneously in a simple case (when a\cap b is not

// inside open a or inside open b.

static double KMeasureSimple(double l, Point& O, Segment& a, Segment& b)

{
Point a1 = a .from, b1 = a .to, a2 = b .from, b2 = b .to;

typedef enum {IN=−1, OUT=1} direction;

direction dirA = OUT, dirB = OUT;

if (b1 .between(O, a1) | | 210

(fabs (b1 .x − O .x) < DBL EPSILON &&

fabs (b1 .y − O .y) < DBL EPSILON)){
dirA = IN;

b1 = a .from;

a1 = a .to;

}
if (b2 .between(O, a2)| |

(fabs (b2 .x − O .x) < DBL EPSILON &&

fabs (b2 .y − O .y) < DBL EPSILON)){
dirB = IN; 220

b2 = b .from;

a2 = b .to;

}
double l11 = sqrt ((O−a1) .norm ());

double l21 = sqrt ((O−a2) .norm ());

double l12 = sqrt ((O−b1) .norm ());

double l22 = sqrt ((O−b2) .norm ());

double l32 = ((b1−b2) .norm ());

double l13 = sqrt ((O−a1) .norm ());

double l23 = sqrt ((O−b2) .norm ()); 230

double l14 = sqrt ((O−b1) .norm ());

double l24 = sqrt ((O−a2) .norm ());
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double cosA = ( (l12/l22 + l22/l12 − l32/l12/l22)/2 );

double alpha = acos (cosA);

return dirA∗dirB ∗ (−1 ∗ OutMeasure(l, l11, l21, alpha) −
OutMeasure(l, l12, l22, alpha) +

OutMeasure(l, l13, l23, alpha) + 240

OutMeasure(l, l14, l24, alpha));

}

/∗ Calculate Kinematic measure of the movements of a segment of length l

intersecting two other segments

∗/
double KMeasureSegment(double l, Segment& a, Segment& b)

{
if ((a .to == a .from) | | (b .to == b .from))

return 0; 250

Line la = Line (a .from, a .to), lb = Line (b .from, b .to);

if (la .parallel (lb)){
double num = lb .a ∗ a .from .x + lb .b ∗ a .from .y + lb .c;

double den = (lb .a∗lb .a + lb .b∗lb .b);

double d = fabs (num) / sqrt (den);

double l1 = sqrt ((a .to − a .from) .norm ());

double l2 = sqrt ((b .to − b .from) .norm ());

Point close (a .from .x − lb .a ∗ num / den,

a .from .y − lb .b ∗ num / den);

Point dir = a .to − a .from; 260

double sign, s;

if ( (b .to − close)∗dir < (b .from − close)∗dir ){
sign = 1;

s = sqrt ((b .to − close) .norm ());

if ((b .to − close)∗dir < 0)

s = −s;

}else{
sign = −1;

s = sqrt ((b .from − close) .norm ());

if ((b .from − close)∗dir < 0) 270

s = −s;

}
return sign ∗ parallelM (l, l1, l2, d, s);
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}else{
Point O = la .intersect (lb);

if (O .between(a .from, a .to)){
Segment x1(a .from, O), x2 (O, a .to);

return KMeasureSimple(l, O, b, x1) +

KMeasureSimple(l, O, b, x2);

}else{ 280

if (O .between(b .from, b .to)){
Segment x1(b .from, O), x2 (O, b .to);

return KMeasureSimple(l, O, a, x1) +

KMeasureSimple(l, O, a, x2);

}else{
return KMeasureSimple(l, O, a, b);

}
}

}
return 0; 290

}

/∗ Calculate Kinematic measure of the movements of an oriented segment of

∗ length l so that it starts and ends within nonintersecting

∗ polygons a and b accordingly.

∗ All Polygons must have boundary vertices in same orientation!!!

∗/ 300

extern "C" double KMeasure (double l, int an, int bn,

intPoint ∗ a, intPoint ∗ b)

{
if (l == 0)

return 0;

double sum = 0;

if (a == b && an == bn){// The same polygon see Theorem

for (int i = 0; i < an − 1; i++)

for (int j = i+1; j < an; j++)

if (j != i){ 310

double tmp = KMeasureSegment(l,

Segment(a [i], a [(i+1)%an]),

Segment(b [j], b [(j+1)%bn]));

sum += tmp;
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}
sum += 2 ∗ (M PI ∗ area (an, a) − l ∗ perimeter (an, a));

}else{
for (int i = 0; i < an; i++)

for (int j = 0; j < bn; j++){
double tmp = KMeasureSegment(l, 320

Segment(a [i], a [(i+1)%an]),

Segment(b [j], b [(j+1)%bn]));

sum += tmp;

}
sum /= 2;

}
if (sum < 0)

return 0;

else

return sum; 330

}

C.6 A.cc

#include <stream.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "geom.h"

#include "A.h"

Point Range(Border& a, Border& b)

{ 10

double oD = 0, iD;

for (int i = 0; i < a .nPoints; i++)

for (int j = 0; j < b .nPoints; j++){
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double tmp = distance2 (a .line [i], b .line [j]);

oD = dmax (oD, tmp);

}
oD = sqrt (oD);

if (&a == &b) // the same curve

iD = 0; 20

else

iD = innerDistance (a .nPoints, b .nPoints, a .line, b .line);

Point ans (iD, oD);

return ans;

}

Covariance::Covariance (double alp=−1, double sig = 1)

{
if (alp > 0 | | sig <= 0){ 30

fprintf (stderr,

"need nonpositive first parameter and positive second\n" );

exit (−1);

}else{
type = 0;

sigma = sig;

alpha = alp;

}
}

40

double Covariance::operator ()(double x)

{
switch (type){
case 0:

double tmp = sigma ∗ exp (alpha ∗ (fabs (x)));

if (tmp < 0)

return 0;

else

return tmp;

break; 50

case 1:

int which = (int ) (fabs(x) / range ∗ nBins);

if (which >= nBins)

return values [nBins − 1];
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else

return values [which];

break;

default:

fprintf (stderr,

"covariance type is not set up properly \n" ); 60

exit (−1);

return 0;

}
}

void A::writeW (char ∗ name)

{
FILE ∗ out = fopen (name, "w" );

if (out == NULL){ 70

fprintf (stderr, "Can not open file %s fr writing\n" , name);

exit (−1);

}
fprintf (out, "%d\n%d\n" , nRegions, nCells);

fwrite (&diam, sizeof(diam), 1, out);

for (int i = 0; i < nRegions; i++)

for (int j = i; j < nRegions; j++){
fwrite (xes [i∗nRegions+ j], sizeof(∗∗xes), nCells, out);

fwrite (wus [i∗nRegions+ j], sizeof(∗∗wus), nCells, out);

fwrite (Values [i∗nRegions+ j], sizeof(∗∗Values), nCells, out); 80

fprintf (stderr, "%d %d %lf::: " , i, j, SCALING);

// int k;

// for (k = 0; k < nCells; k++)

// fprintf (stderr, “%.13le ”, xes [i∗nRegions + j][k]);

// fprintf (stderr, “\n”);

// for (k = 0; k < nCells; k++)

// fprintf (stderr, “%.13le ”, wus [i∗nRegions + j][k]);

// fprintf (stderr, “\n”);

// for (k = 0; k < nCells; k++)

// fprintf (stderr, “%.13le ”, Values [i∗nRegions + j][k]); 90

// fprintf (stderr, “\n”);

}
fclose (out);

}
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void A::readW (char ∗ name)

{
FILE ∗ out = fopen (name, "r" );

if (out == NULL){
fprintf (stderr, "Can not open file %s for reading\n" , name); 100

exit (−1);

}
fscanf (out, "%d\n%d" , &nRegions, &nCells);

if (fgetc (out) != '\n' ){
cerr << "Some problem reading the W file\n" ;

exit (−1);

}
fread (&diam, sizeof(diam), 1, out);

for (int i = 0; i < nRegions; i++)

for (int j = i; j < nRegions; j++){ 110

fread (xes [i∗nRegions+ j], sizeof(∗∗xes), nCells, out);

fread (wus [i∗nRegions+ j], sizeof(∗∗wus), nCells, out);

fread (Values [i∗nRegions+ j], sizeof(∗∗Values), nCells, out);

Values [j∗nRegions+ i] = Values [i∗nRegions+ j];

}
fclose (out);

}

double A::convol (double x)

{ 120

double tmp1 = (∗gamma) (x),

tmp2 = pureMeasure(x);

return tmp1∗tmp2;

}

double A::pureMeasure(double x)

{
return x ∗ KMeasure (x, border [i] .nPoints,

border [j] .nPoints,

border [i] .line, 130

border [j] .line);

}

A::A (char ∗ fileName, int pure, int preCalculate)

{
int i, j, size;



APPENDIX C. CODE LISTING 107

FILE ∗ in = fopen (fileName, "r" );

if (in == NULL){
fprintf (stderr, "can not open file %s\n" , fileName);

exit (−1); 140

}
fscanf (in, "%d" , &nRegions);

if ((border = (Border ∗) malloc (nRegions∗ sizeof (Border))) == NULL){
fprintf (stderr, "Can not allocate memory\n" );

exit (−1);

}

for (i = 0; i < nRegions; i++){
if (1 != fscanf (in, "%d" , &size)){

fprintf (stderr, "can not read file %s\n" , fileName); 150

exit (−1);

}
border [i] . nPoints = size;

if ((border [i] .line = (intPoint ∗) malloc (size ∗ sizeof (intPoint))) == NULL){
fprintf (stderr, "can not allocate memory\n" );

exit (−1);

}
for (j = 0; j < size; j++)

if (2 != fscanf (in, "%d %d", &(border [i] .line [j] .x),

&(border [i] .line [j] .y))){ 160

fprintf (stderr, "can not read file %s\n" , fileName);

exit (−1);

}
if (preCalculate){

border [i] .minX = border [i] .maxX = border [i] .line [0] .x;

border [i] .minY = border [i] .maxY = border [i] .line [0] .y;

for (j = 1; j < size; j++){
if (border [i] .minX > border [i] .line [j] .x)

border [i] .minX = border [i] .line [j] .x;

if (border [i] .maxX < border [i] .line [j] .x) 170

border [i] .maxX = border [i] .line [j] .x;

if (border [i] .minY > border [i] .line [j] .y)

border [i] .minY = border [i] .line [j] .y;

if (border [i] .maxY < border [i] .line [j] .y)

border [i] .maxY = border [i] .line [j] .y;

}
}
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}
fclose (in);

if (preCalculate){ 180

minX = border [0] .minX;

maxX = border [0] .maxX;

minY = border [0] .minY;

maxY = border [0] .maxY;

for (i = 1; i < nRegions; i++){
if (border [i] .minX < minX)

minX = border [i] .minX;

if (border [i] .maxX > maxX)

maxX = border [i] .maxX;

if (border [i] .minY < minY) 190

minY = border [i] .minY;

if (border [i] .maxY > maxY)

maxY = border [i] .maxY;

}
diam = sqrt ((maxX − minX)∗(maxX − minX) +

(maxY − minY)∗(maxY − minY));

}
areas = new double [nRegions];

for (i = 0; i < nRegions; i++)

areas [i] = ::area (border [i] .nPoints, border [i] .line); 200

SCALING = 0;

for (i = 0; i < nRegions; i++)

SCALING += areas [i];

SCALING ∗= sqrt(SCALING);

nCells = 81;

Values = new double ∗ [nRegions∗ nRegions];

xes = new double ∗ [nRegions∗ nRegions];

wus = new double ∗ [nRegions∗ nRegions];

for (i = 0; i < nRegions; i++) 210

for (j = i; j < nRegions; j++){
Values [i∗nRegions+ j] = new double [nCells];

Values [j∗nRegions+ i] = Values [i∗nRegions+ j];

xes [i∗nRegions+ j] = new double [nCells];

xes [j∗nRegions+ i] = xes [i∗nRegions+ j];

wus [i∗nRegions+ j] = new double [nCells];

wus [j∗nRegions+ i] = wus [i∗nRegions+ j];

if (preCalculate){
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Point range = Range (border [i], border [j]);

quadrature (range .x, range .y, xes [i∗nRegions+ j], 220

wus [i∗nRegions+ j], nCells);

/∗ {// uniform spacing

for (int k = 0; k < nCells; k++){
wus [i∗nRegions + j] [k] = (range .y-range .x)/nCells;

xes [i∗nRegions + j] [k] =

range .x + (k+.5)∗(range .y-range .x)/nCells;

}
}

∗/
this −>i = i; this −>j = j; 230

for (int k = 0; k < nCells; k++){
Values [i∗nRegions+ j] [k] =

pureMeasure(xes [i∗nRegions+ j][k])/SCALING;

// cout<< i << “ ” << j << “ ” << xes [i∗nRegions + j][k]

// << “ ” << wus [i∗nRegions + j][k]

// << “ ” << Values [i∗ nRegions + j][k]

// << “ ” << “+-\n”;

}
}

240

}

if (pure)

measure= &A::pureMeasure;

else{
gamma = new Covariance (−1, 1);

measure= &A::convol;

}
}

250

extern "C" void gaussq (int ∗ kind, int ∗ n, double ∗ alpha, double ∗ beta,

int ∗ kpts, double ∗ endpts, double ∗ scratch,

double ∗ x, double ∗ w);

void quadrature (double x1, double x2, double ∗x, double ∗w, int n)

{
// Legendre quadrature (kind = 1)

// w(x) = 1 on (-1, 1)

double ∗ scratch = NULL, ∗ X = NULL, ∗ W = NULL, endpts [2] = { −1, 1 },

zero = 0.0;
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int kind = 1, kpts = 2; 260

static int N = 0;

if (!N){
X = (double ∗) malloc (n ∗ sizeof (double));

W = (double ∗) malloc (n ∗ sizeof (double));

scratch = (double ∗) malloc (n ∗ sizeof (double));

if (X == NULL | | W == NULL | | scratch == NULL){
fprintf (stderr, "Can not allocate 3*%d doubles\n" , n);

exit (−1);

}
N = n; 270

gaussq (&kind, &N, &zero, &zero, &kpts, endpts, scratch,

X, W);

}
if (N != n){

X = (double ∗) realloc (X, n ∗ sizeof (double));

W = (double ∗) realloc (W, n ∗ sizeof (double));

scratch = (double ∗) realloc (scratch, n ∗ sizeof (double));

if (X == NULL | | W == NULL | | scratch == NULL){
fprintf (stderr, "Can not reallocate 3*%d doubles\n" , n);

exit (−1); 280

}
N = n;

gaussq (&kind, &N, &zero, &zero, &kpts, endpts, scratch,

X, W);

}

for (int i = 0; i < n; i++){
x [i] = (x2 − x1) ∗ (X [i] + 1)/2 + x1;

w [i] = W [i] ∗ (x2 − x1)/2;

} 290

}

double A::qgaus (double a, double b, int n)

{
double xx [n], w [n];

double sum = 0;

quadrature (a, b, xx, w, n);

for (int ii = 0; ii < n; ii++){
sum += w [ii ] ∗ ((this −>∗measure) (xx [ii ]));

} 300
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return sum;

}

double A::qfast (void)

{
double tmp = 0;

for (int k = 0; k < nCells; k++){
tmp += Values [i ∗ nRegions+ j][k]

∗ this −>gamma−>operator () (xes [i ∗ nRegions+ j][k])

∗ wus [i ∗ nRegions+ j][k]; 310

}
return tmp;

}

320


