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Preface

This work, as everyting else in our universe, is an aparrent result of “ripples” or microscopic non-
uniformities in the matter immediately following the Big Bang. To follow the spatial-chrolological
chain of events and causal effects more closely lets consider few time-space moments (the choice
and description are subjective).

1. The Big Bang at time 0, locatio(0, 0,0) (approximatelyl4 to 20 x10? years ago). A
guantum fluctation produced an object with the mass of the whole universe in a single point.

2. Time: 11.7 billion years ago (approximatély3 to 8.3 x10° years). Location: Milky Way
Galaxy. Event: Milky Way Galaxy Formed.

3. Time: 4.6 billion years ago (approximatelyt to 15.4 x10° years). Location: Solar System.
Event: Solar System Formed.

4. Time: 600 million years ago (approximately to 20 x10° years). Location: Earth. Event:
abundance of life forms that left mark as first fossils.

5. Time: around 1.7 million years ago (approximatélyto 20 x10? years). Location: Earth.
Event: Pleistocene Epoch began. This minute part of geologic time is sometimes called The
Age of Man.

6. Time: 10,000 years ago. Location: North and South America. Event: First indirect record
of enviromental disasters caused by humans; simultaneous advent of the Neolithic hunting
tribes and demise of many Pleistocene mammals.

7. Time: Now. (approximately4 to 20 x10° years), location: Here. Event: nothing too impor-
tant happening.



Given that the the most distant visible galaxies are more $hai0%? miles away, the last four
events on the list happened almost at the same location in space and almost simultaneously in time.

The vast size and great age of the universe suggest that events taking place on earth during
human history are very specific to the location and the time moment. The desire of science to be
general is thue crippled by this narrow window of observations in space-time. Human nature tried
to counter those problems by putting itself into the center of the universe via ego-, geo-, and helio-
centric theories.

Realizing the insignificance of planet Earth and everything associated with it (including human-
ity) I join the common effort to expand the knowledge with a tiny contribution and with the big hope
of it being useful somwhere else in the great vastness of space-time.
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Chapter 1

Introduction

The current understanding of the world comes from the space-time observations of various phe-
nomena (which are, of course, explained by models of varying complexity, e.g., Kepler's laws,
Newton’s laws, Murphy’s laws, etc.). The phenomena may be expressed as a function (possibly a
finite or infinite-dimensional vector function) over the space-time. The observations of that function
are taken at some points in space-time and then the function is determined given those observations.
In many cases the observations can not be physically taken at the points in space-time, but rather
are gathered as averages over small (or not-so-small regions).

This thesis is concerned about ways to determine the underlying function (model) when the
observations are integrals or averages over some regions in space-time (or just in space). A patrtic-
ularly challenging problem is when the regions are of irregular form (not simple geometric objects
like spheres, cylinders, or boxes). Those types of regions are most common in applications when the
data is gathered for administrative, political, geographic, or agricultural regions. A list of examples
includes:

¢ the yearly per capita income by county;

¢ the weekly number of cases of a reportable disease by state;
e the number of trees by forest subdivision;

e the amount of crop by field.

In each case one can imagine that the quantity of interest could be well-modeled by a smoothly
varying function of time and space. The reported data is simply the average value of the function
(with respect to some measure) over a region in space-time. In order to estimate (predict) the value
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of this function one should know the dependence structure of the underlying stochastic process. The
existence and form of spatial-temporal dependencies is also an important question. In Chapter 2
we propose a method to estimate the covariance function (or variogram) from the integrals of a
stationary stochastic process. The method poses the problem as a set of integral equations which
are then solved via least squares. To solve the equations efficiently in the case of an isotropic
covariance function in two dimensions we obtain a closed form expression for the kernel functions
(the functions that are convolved with the covariance function in the integral equations) in Chapter 3.

We discuss two approaches to predict a space-time process given its integrals; a simple-to-
implement kernel type method and a statistically-motivated best linear unbiased predictor (BLUP
or kriging) method. The latter method requires the knowledge of the trend and the covariance
function of the process. Chapter 4 describes both kernel and kriging type methods for prediction of
a space-time process given its integrals.

Having a predicted surface in space-time we discuss ways to present it in the form of an anima-
tion, i.e., as a set of images shown in a rapid sequence. This type of visualization is a natural way
to present a space-time process, because it has both space (location on the screen) and time (image
number) components.

Finally we apply the above methods to visualize data on mumps disease in the United States.
Here we consider an animation of a function of three dimensions; two dimensions are represented
by space and the remaining one by time. Although showing a set of images in a rapid sequence
(the animation) is not a new concept, the use of this method is new in statistics and, in particular, in
epidemiology.

With this we finish the cycle from the real-world problem of aggregate data, to the theoretical
investigations, and then back to the reality of the mumps dataset.

The following sections describe the work in greater detail. First we consider estimation of a
covariance function given integrals of a stochastic process. The estimation requires an efficient way
to compute some kernel functions and this is the topic of the next chapter. Using an estimate of the
covariance function we can perform best linear unbiased prediction (BLUP) from the integrals of
our stochastic process. We also describe an alternative kernel smoothing type prediction method.
Finally, we apply the methodology to visualize the mumps data in the United States.
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1.1 Estimating a Covariance Function from Integrals of a Stochastic
Process

Consider integrals; = [, f(z)dz oversetsd; C A C R? of a zero-mean stationary process

In Chapter 2 we are interested in the covariance functionn, — x2) of the processf (the
estimate will be used to predict the procgss Chapter 4). The estimate of can be obtained
by solving appropriate integral equations. The following example shows how the estimation of
covariance function can be formulated in terms of the solution to integral equations.

Example 1: Letd = 1, A; = [-1,0], A2 = [0, 1]. Let f(x) be a zero mean stationary
process or[—1, 1] with the symmetric covariance functiof(l) = ~(—[) andz; =
Ja, f(@)dz, 22 = [,, f(z)dx be two observations. Then

E(zz) = E(/Ai/Ajf(u)f(v)dudv>

= //v(u,v)dudv
A; J A,

so that the products;z; approximate the appropriate integral of the covariance func-
tion. As the covariance function is just a function|ef— v| (y(u, v) = v(ju — v])) we
can simplify the integral even further. Take- 1, j = 2, then

/A1 /A2 ~(u, v)dudv :/_01 /01 ¥(Ju — v|)dudv = /Ooo Way a,(D)y(D)dl

where the kernel function

Waa,0) =< 21 if 1<1<2

0 otherwise

We can estimate the covariance functon by trying to find a fuctitimat satisfies the
integral equations;z; = [ Wa, a,()y(1)dl, i,j = 1,2.

A general statistical perspective on solving integral equations can be found in O’Sullivan (1986).
An efficient algorithm to estimateis developed here for the case of an isotropic covariance function
(isotropic means that(z; —z2) is a function of onlyl|z1 —z2]|), d = 2, and the4;’s being polygons.
Related work on the estimation of the covariance function from point observations can be found in,
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e.g., Delfner (1976), Kitanidis (1983), Cressie (1985), Marshall and Mardia (1985). Surprisingly,
the estimation of the covariance function from integral observations has not been investigated.
The assumption of stationarity ¢fz) could be replaced by the existence of the variogram.

Definition 1.1.1 Let f(x) be a stochastic process such that the quantity = E((f(z) — f(z +
t))2) is finite and does not depend onThen the function(t) is called the variogram of the process

f ().

The variogram could be estimated using equations similar to those derived for the covariance
function (see Appendix A.1).

1.2 Deriving the Kernel W
In Chapter 3 we present an algorithm to compute a quantity (see Example 1)

Wap(l) = / dudv (1.2)
u€AWEB, |lu—v||=l

for any two finite regionsd and B in R? with a piecewise linear boundary.

The kernelW 4 5 is needed to estimate the covariance function from the integrals of a stochastic
process over the setsand B (Chapter 2). The covariance function, in its own turn, will be used in
prediction of the values of the process (Chapter 4). The keffiefaay also be used to generate a
random sample of integrals of a stochastic process with any specified isotropic covariance function.

Informally, the kernellV 45 is the amount of the movements of a rigid stick so that one end
of the stick remains in the regiaA while the other end remains in the regi® This analogy is
suggested the usage of integral geometry framework in Chapter 3 (see, e.g., Bonnesen and Frenchel
(1987), Giinbaum (1967), Santalo (1976), Appendix A.2).

The important property of the problem is the shape of the integration regions. The solution is
given for the polygonal regions and the idea is to express the integrals over the regions by way of
the integrals over the boundary (see Theorem 3.5.4).

1.3 Prediction From Aggregate Quantities

In Chapter 4 we are interested in determining a funcfior) givenits integrals; = [, f(z)dx for
the purpose of animation (see, e.g, Eddy and Mockus (1993a), (1993b)), Afwepartition a finite
setA ¢ R?. Modeling the function as a stochastic process and having an estimate of the dependence
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structure of the process (see Chapter 2) we can perform the best linear unbiased prediction of the
process. In Chapter 4 we review existing approaches and introduce new techniques to determine a
function given its integrals.

The determination of a functiofigiven several of its functionalg( f) is a well studied problem
in applied mathematics and statistics. It is called an ill-posed inverse problem. It is an ill-posed
problem because there usually are several solutions to the problem unless we severely restrict the
space of desired solutions. It is an inverse problem because we have to reconstruct the function from
the values of some functionals. For a statistical perspective on solving an ill-posed inverse problem
see O’Sullivan (1986).

The most common variation of this problem is when the functiogadse values of the function
f atpointsz;, i.e.,g;(f) = f(x;). In the statistical approach to the same problem the fungtisn
random and/or the observations include a random error. There are several distinct, well-investigated,
ways to determine the functiofi Let the functionf be nonrandom and the observatiansf) =
f(x;) + ¢, wheree is a random error. Then we can estimgie:) that best fits the data and has
additional desired properties. Depending on the fitting criteria and on the desired properties of the
fitted function we may end up with various kernel type methods, orthogonal function series methods,
or spline methods. If the functiofiis assumed to be random and observationg/g) = f(x;)
then the standard approach is to use one of best linear prediction (or kriging) methods (see, e.g.
Cressie (1991)). A comparison between Kriging and spline prediction from point observations in
the one-dimensional case can be found in Laslett (1994). The conclusions are that the general
cross validation splines (see, e.g., Whaba (1990)) in most cases tend to oversmooth increasing
mean squared error. Kriging from meteorological point observations in space-time is described in
Handcock and Wallis (1994).

When the observation functionajsare integrals of the functiofj, i.e.,

5 = [ Ki(w)f (@)de

whereK;(x) are known functions, we have to solve those integral equations to determine the func-
tion f. This problem is also well investigated and most of the above mentioned methods (except the
kernel methods) were widely used to solve it.

A kernel type smoothing method is described in Eddy and Mockus (1994). A similar problem of
estimating population density was considered by Tobler (1979). That paper contains a bibliography
from the field of applied geography. The interpolation proposed by Tobler is a numeric solution
of a Dirichlet’s equation with somewhat arbitrary boundary constraints. The method is designed to
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produce an interpolant under geographic constraints in the form of lakes, mountains, and deserts.
Unfortunately the interpolant is not simple to compute and lacks statistical justification.

We describe two interpolation methods. The simplest method to use (kernel type method) (see
Section 4.4) is similar to the kernel smoothing methods. We are not aware of anyone using kernel
methods to interpolate from aggregate data. A more sophisticated method (see Section 4.2) is based
on the assumption that the function of interest is a stochastic space-time process and we construct
a best linear unbiased predictor of such process. We will refer to this method as a kriging type
method because the best linear unbiased prediction in more than one dimension is often referred
to as kriging. While the kernel type method has little justification (except for its simplicity) it
produces results (the animation) similar to the kriging type method. The smoothing parameter of
the kernel method could be qualitatively assessed from the estimate of the covariance function.
Strong long-range correlations would imply that more smoothing is desirable, while weak long-
range correlations would imply that less smoothing is needed; the predicted surface in the later case
looks more like a step function.

1.4 Applications in Visualizing Mumps Data

Visualization of complex models or data can provide useful insights that are difficult or impossible
to detect in other ways. In Chapter 5 an animation of a function of three dimensions is considered,;
two dimensions represent space and the remaining one time. Although showing a set of images in
a rapid sequence (the animation) is not a hew concept, the use of this method is new in statistics
and, in particular, in epidemiology. There is a substantial amount of work trying to show a high
dimensional function on a two dimensional static display (see, for example, Tufte (1983)). Another,
more recent approach, is interactive graphics (see, for example, Cleveland and McGill (1988)). In
this case some relatively simple projections from a higher dimensional space onto a two-dimensional
display are performed and the viewer can interactively change the projection, rotating or scaling the
displayed object. An automatic change of projection, a “Grand Tour,” is another possibility (see
Asimov (1985)). All those technigues are not very useful for the large amounts of data involved in
space-time processes. In epidemiology a standard visualization technique is a static disease map.
It was first well documented by Snow for the 1748-1754 cholera epidemics in London (see, e.g.,
Cliff and Haggett (1992) pp.4-11). Any epidemic, as well as many other processes, changes both in
space and time. An animation is an improvement of the static map as it enables us to perceive the
change in time visually. Section 5.4 contains a brief discussion on how an animation is produced.
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The space-time process is estimated from data that has a particular form. In epidemiology that
data usually represent counts of the disease cases in some administrative regions and over some time
periods. To estimate the intensity of the disease one has to estimate a function from its integrals over
the mentioned administrative regions and time periods.

Small area estimation methods (see, e.g., Ghosh and Rao (1994)) could be appropriate to prepare
the data for animations of mumps for individual states or counties. The animation of the whole con-
tinental United States does not require such fine details, and, to the contrary, the mumps incidence
with spatial precision the size of a county in the considered animation (in the imaginary situation
if we had monthly incidence rates for the counties) would look highly discontinuous and would
be difficult to understand visually. The main reason is the extremely nonuniform distribution of the
population, for examplei4 percent of the population live ith5 most populated counties percent
of the total number of counties) and the area of those most populated counties is a negligible percent
of the area of the continental US. In our animation those counties look like little specks, yet that is
where virtually all mumps cases are concentrated. To show the qualitative behavior (that could be
comprehended by viewing the animation) of the spread of mumps on the scale of the United States
we need to use substantial amount of smoothing.

A VHS videotape recorded in NTSC standard (used in the United States and Japan) that comes
with this thesis contains the animations described in Chapter 5.



Chapter 2

Estimating a covariance function given
Integrals

2.1 Introduction

We have integrals; = [, f(x)dx over setsd; C A C R? of a zero-mean stationary Gaussian
processf on A.

In this Chapter we are interested in the covariance funefion — x2) of the procesg (the
estimate will be used to predict the procgsm Chapter 4). The estimate gfcan be obtained by
solving appropriate integral equations (see Example 1).

The dimensionalityl of the procesg (z) is important because in the case of a two-dimensional
process we provide an efficient implementation of the estimation algorithm; it is difficult to estimate
in higher dimensions for general regioAs. In applications we are frequently interested in three-
dimensional space-time processes, but the regibhswve irregular boundary only in two spatial
dimensions (for example, borders of an administrative or political region). If the integrals are given
for spatial regions over a fixed time period those regions in three dimensions (including time) are
prisms and this particular form simplifies the estimation process.

The assumption of stationarity gf could be replaced by the existence of a variogram. The
variogram could be estimated using equations similar to those derived for the covariance function
(see Appendix A.1). A rigorous treatment of generalizations of spatial processes for which the pre-
diction is possible given only one realization can be found in, e.g., Matheron (1973). Those general
processes are called Intrinsic Random Functions (IRF) and they possess an analog of a covariance
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function - a generalized covariance function. The variogram is a simple case of a generalized co-
variance function.

In Section 2.2 three types of integral equations are obtained: for a covariance function, for a
spectral density, and for some (to be defined later in Equation (2.5)) distribution fugtibhose
equations are then used to estimate the covariance function, the spectral density, or the ¢&inction

In Section 2.3 ways to solve the resulting integral equations are considered.

Section 2.3.3 considers the sufficient conditions for the asymptotic consistency of the proposed

estimator.

2.2 Estimation Problem

Let f be a stationary zero-mean Gaussian process on 4 setR? having unknown covariance
function~. Letz; = fAi f(z)dz, whereA; C A, i = 1,...,N. Then the vectofzy,..., zn),
wherez; = [, f(z)dz, A; C A, has a multivariate Normal distribution with expected value 0 and
covariance matrix

Cov(zi,...,2N) =

Ja, Ja, Y(w,v)dudo - [y fAN ~(u, v)dudv
: : : (2.1)

fAN fAN ~(u, v)dudv

The products;z; approximate the integralg,. fAj v(u — v)dudv (for a stationary process
~(u, v) is a function of onlyu — v), and~y can be estimated by solving an inverse problemyfor

2i2; :/ / Y(u — v)dudv, i,j =1,...,N. (2.2)
A; J A

If the A;’s are regularly spaced, the appropriate; could be averaged, reducing the number
of equations. In the general case, it is not clear how to reduce the total numiet 6N + 1)/2
equations.

The solution to an inverse problem is, in general, not a positive definite function, but it can be
projected onto the space of nonnegative definite functions. To perform the projection we can do a d-
dimensional Fourier transform of the estimate obtained by solving the above-stated inverse problem
(2.2) to get the function

o) = [ Au—o)Te 0w~ )
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wheres is an d-dimensional vector arfd — v)” s is a scalar product.
The estimatey will, in general, be negative in some regions. Takiig= max(g,0) we can
perform an inverse transform

=) = C [ gH()e s,

whereC' is an appropriate constant. The functimill be nonnegative definite.

Another approach could be to expresas a Fourier transform af and then solve the inverse
problem forg. This way we will need to estimate a positive functipmstead of a positive definite
function~. The inverse problem is:

2iz; = /A./A"y(u—v)dudv
i J

= ///g(s)ei(u*“)Tsdsdudv
A; JA;

- / 9(5)Va,a, (s)ds, (23)

whereVy, 4,(s) = [4, fAj i) qudy,

The solutiong(s) has to be a nonnegative function to ensure nonnegative definiteness of the
estimated covariance functigriiu — v)) = C [ §(s)e'(*~v)3ds.

For an isotropic covariance function (i.ey(u,v) = ~(|lu — v||), where|| - || is Euclidean
distance) Equation (2.2) can be rewritten as:

Zizj = /141 /Aj v(u — v)dudv
= [T Was,@ra, (2.4)

wherel = ||u — v|| and

Wa,a,(l) = dudv

/u,v:uGAi,veAj,uv:l

The functionsi¥4, 4, (1)’s are nonzero only on intervals

le( inf flu—vl], sup Hu—vH)

u€A; vEA; u€A;,vEA;

The geometric problem is to obtain the weight functidia, 4, (1). The functionsV 4, 4, (1) are
closely related to the kinematic meas(, A;, A;) (see Appendix A.2) of all movements of an
oriented segment of lengtlsuch that one end of the segment is in the4dednd the other end is in
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the setA;. In Chapter 3 we obtain an efficient algorithm to calculate the keiglss; andVa, 4,
when the regionsl; are inR2.

Not any positive definite function is an isotropic covariance function in more than one dimen-
sions. A general form of an isotropic correlation function can be found in, e.germM&t986). If
a correlation function of a d-dimensional stationary random process is continuous at the origin
then there exists ddimensional random variabl® which hasr as characteristic function. The
distribution function of that random variable is called the spectral distribution function of the pro-
cess. For isotropic correlation functiofi) = E(e™ X) = E(e/IXIY) wheret = || X | andY is a
random variable independent|X || and uniformly distributed on a unit sphere 8. The density
function and the characteristic function fBris

1 — 2)(d=3)/2
fY(y):%7 -1<y<1
B(*73)
d—2 [2\F
or)="571(7) T a0

where B is the Beta-distribution ad is the Bessel function of the first kind. Taking expectation

conditional on|| X || and then taking expectation with respect to the distribuioof ||.X || we get

r(l) = G(0) + /0 by (1s)dG(s). (2.5)

hence the isotropic correlation function is a scale mixture of Bessel functions and the estimation of
such function could be done by estimating the functibappearing Equation (2.5). Reformulating
problem (2.4) in terms of the functiad we get

%z = /0 S W, (D)l
_ /0 S Wan, (o (G(O) + /0 h ¢y(ls)dG(s)> di
_ /0 " Quua, (5)dG(s) (2.6)

whereQa,a,(s) = o ([5° Wa,a, (Déy (Is)dl + Sa,84,G(0)), Sa, is the area ofd;, ando =
7(0).

Several parametric correlation models for continuous stationary stochastic processes on the
plane can be found in the literature. Whittle (1954) considered a spatial AR process generated
by two-dimensional Laplace equation

O f(z,y) N Of(z,y)
Ox? Oy?

- ¢f($, y) = 6('7;73/)7
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whereg is positive and(z, y) is a two-dimensional white noise. Vecchia (1985) considered classes
of two-dimensional spatial processes with rational spectral density and gave computational formulas
for calculating correlations. Jones and Vecchia (1993) consider fitting spatial ARMA processes that
are solutions to stochastic differential equation:

0? 0? 0? 0?
(W‘*‘ayQ—%) <(’3:1:2+8y2_¢p> f(z,y) =
0? 0? 0? 0?
(8562+8y2_90> (E)a:?+('9g/2_9q> 6($,y)
All those models could be estimated using the methods to solve the inverse problems (2.4) or

(2.3) as described in the next section. We will only consider isotropic covariance function so the
arguments to the covariance function or the spectral density are scalar.

2.3 Inverse Problem

In this section the integral equations (2.4), (2.3), and (2.6) are solved. As was indicated in Sec-
tion 2.2 most of the methods that solve integral equations would produce a nonpositive definite
estimate fory (unless we are just estimating a parameter of a family of positive definite functions)

if we choose to solve Equation (2.4). The solution to Equation (2.3) needs to be nonnegative and
that is a much simpler condition than nonnegative-definiteness.

In general it may be reasonable to solve integral equations in the space domain also. The actual
methods used to solve integral equations and the basic properties of the stochastic process should
influence the decision in which domain to solve the integral equations. As an example let the process
f be nearly white noise. Then the covariance function would decrease dramatically at the origin,
complicating its estimation. The spectral density would be close to a constant function, which is an
easy function to approximate. If we consider the opposite example, when there exist long distance
positive dependencies in the procgsshen the covariance function would decrease smoothly and
the spectral density would have spikes. This latter case is likely to be easier to solve in the space
domain.

Equation (2.6) is more difficult to solve than the other two equations. The advantage is that the
approximate solution would be a well defined isotropic covariance function.
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2.3.1 Parametrization

Although we are doing “nonparametric estimation”, we have to represamd ¢ in some finite
parametrization in order to solve the integral equations numerically. An example of the parametriza-
tion, ¢(s) could be a step function(s) = Zé‘i‘ol 9pls,<s<s,.1» Wherel is an indicator function.
We could also choose some spline function or a function series to approxjraatdy.

Denote the parameter vectgr= (1, ...,na). The integral equations in this parametrization
become:

Ziz5 = /Wij(l)’Y(Ln)dl?

zizj = /V%j(t)g(s

ZiZj :/Qz’j(t)dG(37n)'

WheI'EWij(l) = WAiAj (l), V;j(l) = VAiAj (l) aninj(l) = QAiAj (l)
Now we could look for the weighted least squares solution to those equations, i.e, for

N = argn%nZC” <ziz] /WZ] (I,m dl> , (2.7)
2
1) = arg H%;lnz Cij (zlzj /sz (s n)ds) , (2.8)
i,J
2
’f7 = arg Ir%nz Cij (ZiZj - /Qij(s)dG(S, n)) . (29)
]

whereC;; are weights that could be inversely proportional to the variancg 9f In that case
2
and when the ared 4, of the regionsA; gets small, the”;; are proportional to(sAlsA> . In
1Z \ 2
SASAJ) , then

and perform least squares again. The are updated in this way until
2

practice we can perform the least squares iteratively; firstdinging C;; = (

R 1
S0y = W, Dt a?

n stops changing from iteration to iteration. In practice, having the weights= ﬁ
(as opposed to having;; = 1) provided more reliable convergence of the numerical optimization
methods in finding the optimal solution.

The refinement of the least squares procedures could be an MLE (Maximum Likelihood Esti-
mate). If we assume the procebto be a stationary zero mean isotropic Gaussian process with the

covariance functiony(l,n) plus a fixed trendu(n, u), then the vecto{z; — [, u(n,u)du}, i
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1, ..., N would be have multivariate Gaussian distribution with zero mean and the covariance func-
tion given by Equation (2.1). Maximizing the likelihood of the observatipn$ we can obtain the
optimal value of.

2.3.2 Step Function Approximation

Let0 =lp <y <lo < ... <ly-1 <ly = oo. Lety(l,n) = X5 mily, .., (1) be an
approximation to the covariance functiof). Let Wi’j- = fllk’““ Wi;(l)dl. Then the least squares
solution

2
7 = arg mﬁn%: Cij <zizj — Zk: WZE%) (2.10)
can be obtained by solving a system®{N + 1)/2 linear equations withl/ unknowns under
constraints thay is positive. Unfortunately, the solution will not be a positive definite function.

It will not be a reasonable covariance function because if a covariance function is continuous at
zero it is continuous everywhere (see, e.g., Cramer and Leadbetter (1967)). The piecewise constant
approximation given in Equation (2.10) should be interpreted as an approximation of the integrals
of the true covariance function, i.ey (lx+1 — lx) ~ fll:“ ~(1)dl.

Splines of the first or higher order (step function is a zero order spline) could be used as an
approximation of the covariance function. The usefulness of that approach is not clear. The ap-
proximation fory is not likely to be a positive definite function even if we use higher order splines,
while the least squares equations are likely to become more complicated.

Let0 = sp < 51 < $2 < ... < sy—1 < sy = 0. Letg(s,n) = Zi]‘ial Nil[s;,5:,1) () b€
an approximation to the spectral density functigr). Let Vi’]‘? = [P*1V;j(s)ds. Then the least

Sk
squares solution

2
7 = arg mﬁnz Cij (zizj — Z Vzljnk> (2.11)
7,] k
>0, k=1,....,M—1 (2.12)
can be obtained by solving a systemM{N + 1)/2 linear equations with\/ unknowns under
constraints thag is positive.
Let
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be an estimate for the mixing measureof the scale for the Bessel functions involved in Equa-
tion (2.5). Let

1) = /°°¢y<z8>da<s,n>

= Z — Ni—1 ¢Y(l52)

=1
Then we could find least squares solution#doy

2

M
n= argn%nZC,] <zlz] / Wi ()Y (i — niea qby(lsl)dl) (2.13)
2,] =1
or by
M 2
7 = arg H%%nz Cij <ziz]- =3 Qij(si)(mi — 77i1)> (2.14)
ij i=1

2.3.3 Consistency of the Step Estimators

We will consider asymptotics in terms of the size of the regidngetting smaller as well as the
size of the regiorA getting larger. The former is to obtaiy(/) when! is small and the latter to
obtain~(7) whenl is large. Appropriate theorems with proofs are given in Appendix A.4.

2.4 Example

To illustrate the behavior of the covariances between regions we consider a simple parametric case
with v(t) = oe. The three regiond, A,, A3 partition a30 x 30 square regiom (see Figure 2.1).

In this example we expect the covariar@ev(z1, z2) to be bigger than the covarian€ev (21, z3)

despite the fact that the regiods and A3 have the same area.

Figure 2.2 shows covariances between all possible pairs of regions for different valaes of
using covariance function(t) = e*. As expected, the covarian€&v(z1, z1) is the biggest due
to the largest area of;. The covariance€ov(z2, z2) and Cov(zs, z3) are identical because the
regionsA; and As are of the same shape and size.

It is interesting to compare plots for the covarian€&ss(z;, z3) and Cov(z2, z3). For the
values ofa close to zero the covariandeov(zs, z3) is smaller than the covariancéov(z1, z3)
because the regiod; is larger than the regiod, and whena is close to zero the correlations
decrease slowly with distance, i.e., the larger distance between the régiansl A3 (than between
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Figure 2.1: The three regions;, As, As

A, and A3) does not affect the covariance too much. For the values fafr from zero we have
Cov(z1, 23) < Cov(zs, z3) because the region$, and A; have a long common border (they are
“close”), while the regionsi; and A3 have only one point where they meet.

The surface of the sum of squares in Equation (2.7) as a functieraafia are plotted in I;ig-

ure 2.3 using;z; = Cov(z;, z;), covariance functiory(t) = e~*, and weight’;; = ﬁ

The sum of squares using exact covariances looks like a Rosenbrock function and is difficult to
minimize numerically. This kind of surface is a result of “numerically unfriendly” parametrization
of the covariance function.

The Rosenbrock function is often used to evaluate the performance of humerical optimization

algorithms an is given by following equation:
F(z,y) = 100(y — 2*)® + (1 — x)?

It has banana shaped level lines.

2.5 Summary

In this chapter the problem of estimating a covariance function of a stationary isotropic process
when the available data are integrals of this process was considered. Examples of integral data
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Figure 2.2: Covariances as functionscof

include but are not limited to:
e Reports of disease counts over administrative (political) regions.
e Reports of various kinds of census data over census regions.
e Reports on crop yield over different fields.

The estimation of the covariance function from point observations was investigated before, but
the estimation from integral observations was not. In the case of point observations the nonparamet-
ric form of the covariance function is estimated from the averages of products of observation pairs
with a fixed distance apart. When the data are integrals this approach is not applicable.

The proposed solution entails constructing a system of integral equations and then solving by
least squares. The three types of integral equations were given by Equations (2.4), (2.3), and (2.6).
The kernel functions for those integral equations are obtained in the next chapter. Equation (2.4) was
used to estimate the covariance function directly, Equation (2.3) was used to estimate the spectral
density, and Equation (2.6) was used to estimate the mixing measure for the scale family of Bessel
functions (the mixture of those Bessel functions represents the covariance function of interest).
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Figure 2.3: The surface of the sum of squares

18
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We proposed to solve those equations using the least squares approach (alternative, likelihood
based approach was mentioned at the end of Section 2.3.1). Estimation of a parametric form of
the covariance function (e.gy(l) = oe~!) can be performed by directly minimizing the sum of
squares with respect to the parameter (€g.)).

We considered a nonparametric estimation of the covariance function (i.e., when the number
of parameters is asymptotically infinite). We considered approximating the covariance function
in Equation (2.7), the spectral density in Equation (2.8), the measureEquation (2.9). Sim-
ple and computable approximations for all three cases were given in Section 2.3.2. The particular
form of step function approximation for the covariance function and for the spectral density (Equa-
tions (2.10) and (2.11)) can lead to an estimator that is not necessarily a valid isotropic covariance
function in R? (although the estimator is asymptotically consistent), while the last two estimators
given in Equations (2.13) and (2.14) always represent a valid isotropic covariance function.

A set of conditions for the consistency of the estimator (2.10) were given in Appendix A.4.

A simple example was then given to illustrate how the covariances between integrals over regions
depend on the covariance function of the underlying stochastic process.

A simple but useful additional result of this chapter is the ability to use the integral equations
in opposite direction: to obtain explicit covariances between integrals of a stochastic process when
a covariance function is known. Those covariances between integrals of the process can be used to
generate the integrals of the process directly.



Chapter 3

Geometric considerations

3.1 Introduction

In this chapter we obtain the kernél for Equation (2.4). We present an algorithm to compute a
guantity

Wag(l) = / dudv
u€AWEDB, |lu—v||=l

for any two finite regionsd and B in R? with a piecewise linear boundary. The main result of the
chapter is Theorem 3.5.4, which shows relationship between some efficiently computable kinematic
measure and the quantiy/ 45 (1).

The kernellW 4 5 is needed to estimate the covariance function from the integrals of a stochastic
process over the sets and B (see Chapter 2). The covariance function, in its own turn, will be
used in prediction of the values of the process (see Chapter 4). The kdrfrmabsy also be used to
generate a random sample of integrals of a stochastic process with any specified isotropic covariance
function.

The basic idea of obtaining the kerriél is to replace the two-dimensional double integral

/A/B’y(u—v)dudv

/0 S WasU)y (1),

with the one dimensional integral

(also, see Example 1).
Informally, the kernel 45 is the amount of the movements of a rigid stick so that one end of
the stick remains in the regiof while the other end remains in the regiBn

20
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To solve the stated problem we use the terminology and basic facts from integral geometry (see,
e.g, Appendix A.2, Santalo 1976, Bonnesen and Frenchel 1987).

The important property of the problem is the shape of the integration regions. The solution is
given for the polygonal regions and the idea is to express the integrals over the regions by way of
the integrals over the boundary (Theorem 3.5.4).

The kernelW 45(1) is related to the kinematic measuvé(l, A, B) (it is proportional toM as a
function of A, B up to a linear function of; for more details see Appendix A.2) of all movements
of an oriented segment of lengttsuch that one end of the segment is in the4etnd the other
end is in the sef3. This relation leads to the investigation of the properties of the measure
Another measure of interestid;, the kinematic measure of all movements of an oriented segment
of length/ intersecting two line segments. We obtain the measiyén a closed form and express
the measurd/ through the measur&f, to find the kernelV (see Theorem 3.5.4).

In Sections 3.2 we introduce definitions used later in this chapter and obtain elementary prop-
erties of the measure® and ;. In Section 3.3 a special case of the measuravhen both ends
of the segment are within the same set is considered. Then, in Section 3.4, a closed form for the
elementary boundary measuké, is obtained. In Section 3.5 all results are put together to get an
easily computable expression fdf.

In Section 3.6 extension of the results for general regions and for higher dimensions is consid-
ered. Then an alternative solution to the original problem is described (Section 3.7). Finally some
examples are presented.

3.2 The Kinematic Measure of a Segment with its Endpoints Within
Two Sets
To simplify the presentation we will introduce the following notation. Létl, A, B) be the kine-

matic measure (see Appendix A.2) of the movements of an oriented segh@iiiengthl so that
K has one end in the interior of and the other end in the interior &f.

Definition 3.2.1 Let M,(l, A, B) be the kinematic measure of the movements of an oriented seg-
mentK of length/ so thatK has nonempty intersection with setsand B.

General kinematic measures of the movements of a fixed size oriented segmeihbe de-
noted asn(K : ...), where. .. explicitly specify the restrictions on the possible movements.
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Proposition 3.2.2 LetC'4, 4, be the convex hullaf; U A, A;NA; = 0 andM(l, A;, A;) be equal
to the measure of all movements of an oriented line segiiaitiengthl with one end in the set;
and other end in the set;.

Then
M(l, Ai, Aj) = M(1,Ca,4,,Ca,4,)
—M(l,Ca,a; \ Ais Caa; \ As)
—M(l,Ca,a; \ Aj, Ca,a, \ Aj)
+M(l,Ca;a; \ (A U A;),Caa; \ (AU Ay))
Proof:

To simplify the notation letd = A;, B = A;,C = Ca,a;, D = C\ (BU A). Using Equa-
tions (A.4) and (A.5) and biadditivity property of the double integral we get:

M(1,0,C) = %
= L Wac) + Waop.o)

We,c(l)

(Wa,B(l) + Wa,aup(l) + Waup,Bup(l) + Wpup,a(l))

(Wa,B(l) + Waup,aup(l) = Wp.aup(l) + Weup,Bup(l) + Wi a(l) + Wp a(l))

o~ = e e~ =~

(2Wa (1) + Waup,aup(l) + Weup,up(l) — Wp p(1))
— M(,A,B)+M(I,AUD,AUD) + M(i,BUD,BUD) — M(l,D, D)

This proposition implies that it is sufficient to calculaté(/, X, X) (the kinematic measure of
all movements of the oriented segment of leng#uch that both ends of the segment are within
some general seX) to obtainM/ (1, A;, A;). Note that the usefulness of this proposition might be
limited as the seiX’ = Cx,4; \ (4; U 4;) can be unconnected if setl, A; are not convex (see
Figure 3.1).

3.3 The Kinematic Measure of a Segment Inside a Convex Set

Given any convex sek of areaF and perimeter., the kinematic measure of all movements of
an oriented segmeiit of lengthl/ such thatX’ N Ky # 0is

m(K; KN Ky#0)=2rFy + 2lLg (3.1)
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Figure 3.1:4;, A;, and their convex hull’4, 4,

(see Santalo pp. 90). We are interested in the measure of all movements of a segment such that
K C Ky (M(l, Ky, Ky)). For any convex sek, the intersection of the segmehtwith the border

0K, can have zero, one, two, or infinitely many points, icard(K N 0Ky) = 0,1,2,00. Itis

easy to prove that for any convex s&t), m(K;card(K N 9dKy) = oo) = 0. The cases when
card(K N 0Kp) = oo will be disregarded in the future discussion as that does not change the
measure of interest.

Proposition 3.3.1 The measurd/ (I, Ky, Ky) of all movements of an oriented segmansuch that
K is inside a convex sdt|; can be written as follows:

M(Z,K(],Ko) = m(K7K C K()) = m(K;KﬂKO ?é (Z)) — My — Ms, (32)
whereM; = m(K; card(K NO0Ky) = 1), My = m(K; card(K NOKyp) = 2).

Proof: This equation is a consequence of the fact that if the segidantersects the convex
setK it may have zero, one, or two points in common with the borddk @{the case of infinitely
many points has kinematic measure zero). If it interségisaand does not intersedtik then it is
inside the seK. O

Let K, be a convex polygon. The measug, Ky, Ky) is obtained by Santalo (pp. 91-92) for
the particular case when the segmé&ntan not intersect two nonadjacent sides of the polygon, i.e.
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whenM, = 0.
The bordeb K of a polygon is a union af segments; with lengthg/;. For eacts;, M (1, s;, s;) =
m(K; K Ns; # () = 4ll; according to Eq. (3.1) as the areasfis zero and the perimeter ;.
Hence summingn(K; K N s; # () over all border segments we get) ", 41l; = M; + 2M, as
K can intersect at most two border segments at a time and when it does the measure is counted for
both of them.

Proposition 3.3.2 The measure\/ (I, Ky, Ky) of all movements of a segmeht such thatK is
inside a convex sdt of areaF, and perimeter is

M(l,Ko,Ko) =21 Fy — 2lLg + Mo, (33)
Proof:

M(l, Ko, Ko) = m(K;KNKy#0)— M, — M
= 2wFy+ 2lLy — (M1 + 2Ms) + M
= 2wFy+ 2Ly — 4lLy + Mo
= 27Fy — 2Ly + Mo,

The first equality is from Proposition (3.3.1), the second equality is obtained from Equation (3.1),
the third equality is is an application of Poincare’s formula (see Santalo pp. @11).

For a convex polygork with the boundary consisting of segmentswe getM (I, Ko, Ko)
=2nFy — 21Y" ||si|| + M and the quantityl/, can be easily expressed using measuge

My = m(K;card(K NOKy) =2)

Z Mb(lasiasj)

m

1

2
81'7&8]', $i,S; €0Kyp

Noting that$My(l, s;, ;) = 21||s;||, we can rewrite Equation (3.3) for the case of a convex
polygon

1
M (1, Ko, Ko) = 2nFy + ST (—1)% My(l, 51, 55), (3.4)
si,SjeaKo
T
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Figure 3.2: Two segments forming an angléntersected by a third one

3.4 The Kinematic Measure of a Segment Intersecting Two Other Seg-
ments

Let two segment®) A and O B with lengths/; andls have one end®) in common and an angle

a > 0 between them be intersected by a segmiéntf length! (see Figure 3.2). The measure
My(1,AO,0B) = m(K; K N OA # () and K N OB # (). In this section we will use shorter
notation M 40,08 = My(l, AO,OB). This measure for other possible positions of the segments
AB and BC (see Figure 3.3) can be obtained using the measure for the case shown in Figure 3.2.
In general case (Figure 3.3)

Map,cp = Map,oc + Mapop = Mo,oc — Moa,oc + Mop,op — Moa,op
Denote the rays originating at poirtis O, A, B and going in the direction of vecto@, O_/l, 07, OB
accordingly as?(OB), R(OA), R(Axo), R(Bo). From Figure 3.4 we get
Mao.0B = MroB),r(0A) — MROB),R(Ax) — MR(Boo),R(0A) T MR(Boo),R(Acc)-
The measures on the right hand side of the equation are (for derivation see Appendix A.3):

1?2 (14 (7 — a) cot(a
MgroB),r0A) = Sl 5 ) cot(@)) (3.5)
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Figure 3.3: General case of two segmesf3 andCD.

Figure 3.4:M 40,08 = MroB),rR(0A) — MR(OB),R(Ax0) — MR(Boo),R(0A) T MR(Boo),R(Asx0)
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Mg (Bso),R(04) = (3.6)
v lo sin(«) [sin(¢p — )
/¢0 sin(¢) <l + sin(—¢ + a)> < sin(a) B lg) dé
MR(Boo),R(Ax0) = (3.7)

¢11 lg sin( Isin(¢ — )
wm sin(¢) ( sin( ¢+ a)) ( sin(a) B lg) 9

N dmsm < Slll sin(« )) (lsin.(d> —a) l1> do,

w20 n -0+ a Sln(a)
where
o = arcsin (l2/lsin(a)) + «
Y1 = min(m,m — arcsin (lo/Isin(@)) + «)
P19 = arcsin (lo/lsin(a)) +
oo = arcsin (I /lsin(a)) +
Y11 = arcsin (lg/\/l2 + 13 — 2115 cos(a )sin(a)) +a
191 = arcsin (ll/\/l2 + 13 — 2l415 cos(a )sin(a)) + a,

Formula (3.6) is valid whety sin(a) < [, otherwiseM r( oo, r(0.4) = 0. Formula (3.7) is valid
whenif+13—21115 cos(r) < ly, otherwiseM g poc), R(Ac) = MR(Boo), R(0A) OF MR(Boo),R(Asc) =
Mp0B),R(A)-

The integrals appearing in Equations (3.6,3.7) are available in closed form, for example, Equa-
tion (3.6) is:

R CRYRETE L N P

Yo sin(—¢ + «) sin(a)
. 9 .
20151+ cos(@)) — 12 (S“(f) ; com)mi%))
+ (l% sin(2a) + 12 cot(a)) g + 13 sin(a)?In (sin(¢ — a)) Z; (3.8)

The case of parallel segments & 0) has to be handled separately. Assume the situation as
shown in Figure 3.5. Given a fixed orientation &f (it has anglep with [;) the measure of all
non-rotational movements df such thatk’ N1y # () and K Ny # ) is equal to the area of the
shaded parallelogram (see Figure 3.5). Let the distance between the selgraadis bed and the
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Figure 3.5: Two parallel segmerits /5 intersected by the segmeht

shift bes as shown in Figure 3.5. Then

M, 1, = 2/07T max(0, sin(¢) — d) max(0,b — a)de, (3.9)
a = max(0, s — dtan(w/2 — ¢)),
b=min(ly, s+ lo — dtan(w/2 — ¢)),

wherel, [1, [, are lengths of the segmems (1, [>.

3.5 Relation of M and M, for General Polygonal Sets

In this section a signed measuké€* derived from the measutkl,, is introduced. Then a theorem
which gives the relationship between the measurand the measur®/* is stated and proved. As
the measurd/* is directly related to the measuhd, (which, in its own turn, is easily computable)
we can compute the measuvé and hence the kernel® andV'.

To get a relationship between the measuvésand M, in a general case we need a couple of
definitions.

Definition 3.5.1 Let AB, CD be two nonzero length, oriented line segments ang N Lep €
(ABUCD)\ (AUBUCUD), whereL g, Lcp are lines defined by the segments. Thd#, CD
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are called separated.

Definition 3.5.2 Let ﬁ, CD be separated segments. Let K be an oriented segment of |ength
intersectingd3 andC'D. Define the signed measure

M*(I,AB,CD) =
sign (| AC|| + || BD|| — [|AD|| — | BC||) My (i, AB,CD),

where M, is the kinematic measure of the movements of a seghid@ntersecting segmentd B
andCD.

Because the kinematic measure is defined in terms of integrals it is not difficult to show the
following:

Lemma 3.5.3 M* is finitely biadditive on line segments, i.e.

M*(1,AUC,B) = M*(, A, B) + M*(,C, B) — M*(I, AN C, B) (3.10)
M*(1,A,BUC) = M*(I,A,B) + M*(1,A,C) — M*(I,A,BNC) (3.11)

for any three pairwise separated line segme#tsB3, andC.

Using biadditivity of M *(I, P, Q) we can extend the definition to an arbitrary pair of segments
and to an arbitrary pair of sets of segments. Given a finite set of segmenfswe can construct
a finite set of separated segmentse S*, so thatU,cgs = Us<cg+s™ where the union is taken
considering the segments as point subset®%f The construction is as follows: for eaghc S
draw a line L, defined bys. Consider all intersection points between every line and each non-
parallel (to the line) segment. Those points will divide the segmemt® smaller segments’. By
construction every pau7, s; is separated, as the set of lines created from the segmentsis the
same as the set of lines from the segmahts S*.

Let a polygonal sef in R? be any set having a boundary consisting of a finite number of

separated line segments and equal to the closure of its opening, +eP \ P. Let Bp be a set
of counter-clockwise oriented boundary segmefe that for eacly € Bp the interior of the seP
is on left side ofp. More formally, letAB = p and for anye > 0 there exisp > 0, such that vector
A+tp+soe P\ JP,wheret € (¢,1 —€), s € (0,9), andd’is a unit vector having angle/2
with p'in counter-clockwise direction(¢, o) = 0 for the scalar product (angle4s/'2 or —7/2), and
¥ x 0 < 0 for the vector product in a right handed coordinate system).
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Theorem 3.5.4Let P and @ be two polygonal sets. Ldtp, By be sets of clockwise (counter-
clockwise) oriented boundary segmentg’cdnd Q. Then

[ | allan = aaldayda, = [~ wogaa (3.12)
PJQ 0
whereg is any function such that integral on the left exists and
1 1
W(l) =2rFpng + 5 > > M*(l,p.q) =2rFpng + 5 M (I, Bp, Bg), (3.13)
pEBp q€EBg

whereFpnq is the area ofP N Q.

To prove this statement we will have to obtain several intermediate results. First we will obtain
a similar result for two non-overlapping triangles, then we will extend it to the case of an arbitrary
union of non-intersecting triangles, and finally we will prove the general case.

Let AB andC'D be two arbitrary separated line segments from the counter-clockwise oriented
boundariesBp, By of two non-intersecting triangle® and (. SegmentAB divides a plane in
two half-planes so that the triangkis only in one half-plane. Using this fact when considering a
segmentX intersectingA B andC D, we can answer following two questions:

1. CanK have its end insidé’?
2. Cank have its end insid€)?

Following table summarizes answers for different possible orientations of the segments. lllus-
tration is provided in Figure 3.6.

Type | AB | OC | Answer 1| Answer 2| Sign of M*
0 |BA|CD yes yes +
1 AB | CD no yes —
2 BA | DC yes no —
3 AB | DC no no +

Table 3.1: List of the types of the line segment pairs, their orientation, answers to questions 1 and
2, and the sign of the signed measure for the given orientation

We can classify all pairgp, q) (p € Bp andq € Bg) into four types described in the table.
It should be noted that for pairs of type 1 and 3 the segm&htas exactly two intersection points
with triangle P (except when the intersection is a vertextof. This implies that the movements
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Figure 3.6: Possible pairwise orientations4B andC D.

of K when it intersects pairg, ¢ of type 0 contain all other movements &f (only the movements

such thatk N P # () andK N Q # () are considered). Similarly, the movements wiéimtersects

pairs of type 3 are contained in the movements of type 2 and also in the movements of type 3. Let
T; be a set of movements & so that it intersects at least one pair of typdt is easy to see that

T, NTy = T3. We are interested in the kinematic measure of the movenfgnts; U Ts), i.e.

M(l, P,Q) =m(K : Ty (11 U T). Using set additivity of kinematic measure and the sigiof

from Table 3.1

m(K : Tp (Th U T3))
= m(K :Tp) — (m(K : Ty UT3)
= m(K :Tp) —m(K : T1) —m(K : T2) + m(K : T3)
= > M'(Lpg+ Y, Mpyq)

p,q:(p,q) type 0 p,q:(p,q) type 1
+ Y. M(pgo+ >, M(pq)
p,q:(p,q) type 2 p,q:(p,q) type 3
- Z M (K7 D, Q)a
pEBp,qEBq

which leads to the following lemma
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Lemma 3.5.5 Let P and () be two non-overlapping triangles iR?. The kinematic measure of an
oriented segment of lengtiwith one end inP and the other end i) is

M(la P: Q) = Z Z M*(lvpv q) = M*(Z7BP7BQ)7
pEBp qEBqg
whereBp and B are oriented boundary aP and( accordingly.
Any polygonal setP is a union of finitely many disjoint triangleB = U}, P; that could be
obtained triangulating each polygon ih Let P = UP; and@ = UQ); be two non-intersecting

polygonal sets, wher&; and(Q); represent a partition aP and( into triangles. Using set biaddi-
tivity of M

M(l, P,Q)

> M, P, Q;) =
= > >  Mpg)

,j pi€Bp;,q;€Bg;

= Y. M(paq. (3.14)
pEBp,qEBg

The last step can be obtained by noting that if any two triangles from the same polygonal set
share a boundary segment, i.e. un-oriented segmeist the same as un-oriented segment
then those segments must have opposite orientations (boundary is always oriented in one direction,
say, counter-clockwise) and so for any other segment q separategfromhaveM *(1, p;, q) +
M*(l,pj,q) = M*(1,pi,q) — M*(1,p;i, q) = 0.

To prove the general case of Theorem 3.5.4 consider two, possibly intersecting polygonal sets
P,Q.LetPP =P\ Q,PQ=PnNQ,andQQ = Q \ P. PP, PQ, andQQ are non-intersecting
polygonal sets. Using Equations (A.5) and (A.4),

Wpo(l) = Wpppq(l) + Wrpoq(l) + Weg,go(l) + Weq,rq(l)
(M (L, PP,PQ) + M(l,PP,QQ) + M(l, PQ,QQ))l/2
+M(1, PQ, PQ)l (3.15)

To find M (I, PQ, PQ) consider a partition ofQ into trianglesPQ;. Then

MILPQPQ) = 5 Y MULPQ,PQ)
PQiePQ,PQ;ePQ, i#]

PQ;ePQ
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The quantityM (I, PQ;, PQ;) can be obtained using Equation (3.4), using the facttat, p, q) =
My(1, p, q) for any two different oriented boundary segmentg of a convex set, and using the fact
that M* (1, p,p) = —M,(l, p, p) for any oriented segmenpt

1

PEBPQ,.4€BPQ,
whereF'pg, is the area oPQ);. Hence, Equation (3.16) becomes:

1
M(,PQ,PQ) = Y 2mFpQ; + 5
PQ;ePQ PQ,ePQ,PQ;EPQ

M*(l, Bpq,, Brq;)

1
= QTFFPQ + §M*(Z,BPQ,BPQ)

as all terms corresponding to the common boundary between the tridh@lesancel each other in
the sum.
From Equation (3.15) and Lemma 3.5.5,
[

Wpo(l) = §(M*(Z,BPP,BPQ)+M*(Z,BPP7BQQ)

+M*(1, Bpg, BQQ) + M*(1, Bpg, BPQ))

l * * *

= §(M (I, Bp,Bpq) + M*(l, Bpp, Boq) + M*(l, Bpg, Boq))
I, ,

= 5(M*(L,Bp, Bpq) + M"(l, Bp, Bgq))
[

= SM*(L, B, Bo).

The second and third equalities are consequence of the facPthand PP share a part of
their boundary, and the fourth equality uses the fact fi@tandQ(Q share a part of their boundary,
in particular,(0PP U OPQ) \ (0PP N OPQ) = dP. This completes the proof of Theorem 3.5.4.

3.6 Nonpolygonal Areas and Extension to Higher Dimensions

A trivial way to proceed in the case of nonpolygonal ardasvould be to approximate the areas
of interest by polygons and use described algorithms. To do a precise approximation may require
polygons having a lot of vertices and that could make the problem too difficult.
Let P, Q be two finite connected sets, afgh, B their clockwise oriented boundary. Formally
we could consider a contour integral

M*(LBPaBQ):f M*(l,dp,dq),
Bp JBg
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Figure 3.7: Two prisms ilR3.

as a generalization of the sum in the Equation (3.13). The usefulness of such generalization in
practical applications is questionable.

In higher dimensions the problem of findidd 4, 4,is much more complicated unless the re-
gions A; have a special form. An irregular planar region considered over a fixed time period is a
prism in three dimensional space (position on the plane and in time). It is not difficult to extend the
current two dimensional results to three dimensions when the redipage prisms. Led and B
be orthogonal prisms iR? with the basesl, and B, on the same plane(see Figure 3.7). Léi be
a common height of the prisms and let= (u1, ua, u3), v = (v1, v2, v3) be a Cartesian coordinate
system such that the first two components denote coordinates in theppl@hen the quantity

WA,B(Z) = dudv

/ueA,veB, llu—vl|=l
1

= / dU,gdUg X
0

/ du1 dUQ d’U1 dUg
(u1,u2)€A2,(v1,v2)€Ba, Zi:l o (ui—v;)2=12—(uz—v3)?

1
[ Wi, (02 = (s = v (3.17)
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whereW} 5 is the appropriate kinematic measurelfA. This result generalizes to higher di-
mensions, we just need to do the one dimensional integr&V'pf 5, in any (higher than two)
dimensional Euclidean space to get the appropriate fundiionlt should be noted that the re-
gions A and B in four or more dimensions can not be any orthogonal prisms; irregular boundary
is allowed only for two dimensions and those dimensions must be the same for both regions. The
regions must be boxes in the remaining dimensions.

The measuré/,, 4, is difficult to calculate for a general polytope Rr'. In applications the
regions in high dimensions usually have a very specific form (it is not easy to imagine a general
polytope in more than three dimensions), so this specific form might lead to a simpler calculation
of My, ;-

3.7 Discrete Approximation

Instead of computing the function& s, 4, (1) exactly we could divide the regiod into a grid of
small squaresS,,, and approximate the integral in Equation (2.2) by the sum over those squares.
Equation (2.2) then becomes:

ziz; = Z Z ~(Distance(Sop, Sqr))Area(Syp)Area(Sy,),
{o,p:Sop€Ai} {q,r:Sqr€A;}
1,5 =1,...,m.

Using standard filling algorithms for raster graphics we can easily check if a sgyapelongs
to the regiond4;. The number of computations can be prohibitive if we want to improve the approx-
imation. If we take4;, A; to contain on the order af00? grid squares then to obtain the integral in
Equation (2.2) we have to perform an orderl66* calculations. For a twice finer grid, one would
require2* = 16 times more calculations.

3.8 KernelV/

The kernel

Vap(s) :/A/Bei(“_”)sdudv

is connected to the kem®l'a (1) = [,c 4 pep,|ju—v| = dudv. If we define

Wap(l)/2 if 1>0

WAB(Z):{ Wap(—1)/2 if 1<0
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Figure 3.8: The kerneld/4; 4, (1)

ThenVup(t) = W/, 5(1) The functione™ W', 5 (1) seems to be not integrable in a closed form
with respect td. This means that the kernglz(t) = [ ¢*W/ 5(1)dl has to be obtained numeri-
cally. The precise way in which the kerriélis to be obtained depends on the method used to solve
integral Equations (2.2, 2.3).

3.9 Example

To illustrate the behaviour of the kernel weight functions we consider a simple example shown in
Figure 2.1. The three regions,;, Ao, A3 partition a30 x 30 square regioml. KernelsW for all
pairs of regions are shown in Figures 3.8.
The kerneld/ are real valued as the functi®?’ is symmetric. The plots of kernels are shown
in Figure 3.9. A closeup is provided in Figure 3.10. The funcfiowas calculated by performing
the fast Fourier transformation of the values of the funclidii’ at 243 points equally spaced on
the interval(—30+/2, 30v/2). The range fos was intervan x (—1,1). As the functionV is
symmetric it was plotted only for positive valuesof

121
30v2
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Figure 3.9: The kernelB, 4, (1)

Figure 3.10: The closeup on kernélg, 4, (1)

37
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3.10 Summary

In this Chapter we present an algorithm to compute a quantity

Wap(l) = / dudv
u€AWEB, |lu—v||=l

for any two finite regionsd and B with a piecewise linear boundary. This quantity is essential in
estimating the covariance function of the stochastic process given its integrals over the regsns
described in Chapter 2. The quantity may also be used to generate a random sample of integrals of
a stochastic process with any specified covariance structure.

To obtain the quantityV 4 5 we first notice that it is related to the kinematic measur@, A, B)
of all movements of an oriented segment of lenfgttith one end in setl and the other end in set
B (Equations (A.4) and (A.5)). In Section 3.2 we show that this measure can be expressed in terms
of the kinematic measure of all movements of an oriented segment with both ends in the same set.

In Section 3.3 we relate the measuvg/, A, B) to the kinematic measur&/,(l, S,, Sy) (see
Definition 3.2.1) of all movements of an oriented segment of lehgitersecting two line segments
Sa, Sp. We provide a closed form formula for the measudg in terms ofl, S,, and.S, (see
Equations (3.6, 3.7, 3.5, 3.9). The closed form expression for integrals involved in those measures
is given in Equation (3.8).

The measuréd/, can be generalized to a signed measure (see Section 3.5) which depends
on the orientations of the segmeistsandsS,. The measur@/* is then extended to the finite unions
of line segments.

The boundaries of the region$ and B involved in Equation (1.1) are finite unions of line
segments so the measuvg* is defined on them.

As the most important result we find a direct relationship between the quéiiity(/) and the
measureV/*(l,0A, 9B) in Theorem 3.5.4.

Then, in Section 3.6, we extend the results for a general (non-polygonal) regions and to higher
than two-dimensional spaces. We conclude with an example.



Chapter 4

Prediction from spatial aggregates

4.1 Introduction

This chapter is about determining a functitfx) given its integrals; = fAi f(z)dz for the purpose
of animation (see, e.g, Eddy and Mockus (1993a), (1993b)), wHAgsepartition a finite setd C
R

We consider the particular ill-posed inverse problem of determining a fungtidescribed at
the beginning of the section with an intent of producing an animatiof. ofhe observed values
arez; = [,. f(z)dz whereA;’s partition a finite setd C R?, so the simplest interpolant for the
function f could be a piecewise constant function

o Zi
fz) = ;IIEGAiW (4.1)

Discontinuity of such function can be distracting in animations and needs to be avoided (see Eddy
and Mockus (1994)). We consider methods that produce a continuous interpolant.

In Section 4.2 the related work on prediction of the stochastic process is described. Various
ways to remove the trend are listed in Section 4.3. Section 4.4 contains description of a kernel type
method to interpolate a function from its integrals.

4.2 BestLinear Unbiased Prediction

In this section we first review related work and then introduce motivation for BLUP in Subsec-
tion 4.2.1.

39
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In many applications data sets consist of observatigns. . , z,, taken at corresponding loca-
tionsxi, . ..x,. The locations; are usually points in d-dimensional Euclidean spRéeA fairly
common analysis of such data is based on the assumption that it is derived from a stochastic process
F(x):x € A C R% The process is called a random field. The data are derived from a single
realizationf of the field F'. For the inference to be generally possible one of two assumptions about
F are usually made:

1) Fis stationary in the wide sense (second order stationary).
2) Fis an intrinsic random function of ordér(IRF-k) for some integek (Matheron (1973)).

Under assumption 1) the expected vakli@g'(x)) = ¢ and does not depend an There exist a
nonnegative definite covariance function

Y(u—v) =E((F(u) —¢), (F(v) - ¢)).

Under assumption 2 (F'(x)) is a polynomial inx of degreek. There exist a generalized
covariance function (see, e.g., Matheron (1973)).

When the (generalized) covariance function is known, the best linear unbiased predictor (BLUP
or kriging predictor) exists and the expressions for it and its mean squared prediction error are well
known. However, in practice the (generalized) covariance function is rarely known; consequently,
the parameters of a (generalized) covariance function are first estimated and then used in prediction.
The quality of such prediction was considered for a finite sample case by Zimmerman and Cressie
(1992), for an asymptotic case by Stein (1991). A Bayesian analysis in predicting spatial functions
can be found in, for example, Kitanidis (1986).

4.2.1 The Aggregate Data Problem

Let F'(x) be a stochastic process with the indexc A ¢ R?. Let the observed valuesof the
single realizatiory of the proces$’ be

s = [ Ia @t (4.2)

wherel 4,’s are indicator functions for disjoint sets C A.
Letg(f) be alinear operator that is the quantity of interest which would typically(b¢ (value
at some point), or the whole functiory (-).
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For a prior distributionr( f) and a loss functiod.(¢(f), §(z)) whereg is a function of the data
z = (z1,...,2,), We can look forg that minimizes posterior loss:

g =argmin [ L(g(1). 3(2)dP(/12).

whereP(f|z) is the posterior distribution for the realizatign
For the squared error los&(g, §) = (g — §)?) we have

g =argmin [ (g —9)aP(f]2)
g
= argmin E(g%|2) + §(§ — 2E(g|2))

where E(g|z) is a posterior mean of givenz, and we assumed th#t(g%|z) < co. Wheng is
a function,L may be the integrated mean square error 1d58,() = [(g(s) — §(s))%ds), and if
J4 9(s)ds < oo with probability one (and:s is countably finite), then we can exchange the order of
integration and obtaif(s) = E(g(s)|z) almost everywhere with respect to the measlsteHence,
in both cases the distribution of the scalar quangjyor g(s)|z is of interest.

In case when the joint distribution ¢§(s), z) is normal we have”(g(s)|z) = §(z) whereg is
a well known linear function oz given by the formula for the conditional normal distribution. Let
w(s) = E(g(s)), pi = E(z), ci(s) = Cov(g(s), z:), cij = Cov(z;, z;) calculated a priori. Then
the posterior expectation

E(g(s)lz) = u(s) — (ci(s))(cij) ™ (i) — 2). (4.4)

In case when we just know the first two moments of the ve@i0s), z) Equation (4.4) defines
best linear unbiased predictor fofs).

4.2.2 Prediction

Kriging Equation (4.4) involves quantitigs and ¢ that are unknown. The trend(-) is usually
assumed to be a constant (see Section 4.3 for other approaches) and we could egtilmateas
described in Chapter 2.

4.3 Estimators of the Trend

In some cases the spatial process has a nonconstant trend. In the case of linear trend we can es-
timate variogram (see Section A.1) and do best linear unbiased prediction based on the estimated



CHAPTER 4. PREDICTION FROM SPATIAL AGGREGATES 42

variogram (see, e.g., Cressie 1991). When the trend is a higher order polynomial we could estimate
a generalized covariance function of higher order and then do appropriate prediction.

A nonparametric estimate of the trend can be obtained using spatial moving medians (see Sec-
tion 5.4.3). The trend could then be subtracted from the observed values and the prediction could
be done on the residuals.

4.4 Kernel Type Estimator

The usual kernel estimator fgi(x) givenz; = f(x;) is
A o Zz K(:L‘axi)zi
0 = 5 K

, , f(x)dp(z) _
where K (z, z;) is a kernel function. When data are aggregate- W one could define
Aj

an estimator by analogy
Fa) = i 7 fa, K (2, @i)dp(z;)
2 fA,L- K(x,z;)dp(z;)

An implementation of such method is described in 5.4

Some statistical justification for the kernel smoothing over integrals can be given. Lets consider
following version of kriging. Let observationg = [ K(x)(f(z) + W(z))dx where K is the
kernel function (from a spadé€ of infinitely differentiable functions with bounded support)is the
process of interest, arld’ is white noise which is uncorrelated wigh The integral is interpreted as
linear random functional oA’ closure of the space of functiois(see, e.g., Gelfand and Vilenkin
(1964)).

The best linear unbiased predictorfdDh) is defined by the kerndt’ satisfying the unbiasedness
condition [ K (z)dz = 1 and the projection property:

Cov < /K )+ W(x))dz, /G (x) + W(a:))da:) =0
for all G € K satisfying [ g(x)dx = 0. The covariance can be written as

/G(x){ /K y)dy — oK (x )]dx:(),

where [ 0 K (2)G(z)dx = [ K(x)W (x)dz [ G(x)W (z)dz. By arbitrariness of the functio@ the
expression in the square brackets is constant. The solution to the system of equations

/K y)dy —oK(z)=C

/K(az)dm =
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defines optimal kernek for the continuous kriging problem. In Stein (1990) an expression for
kernel K was found for a particular form of generalized covariance function. It was also shown that
asymptotically the kernel predictor was equivalent to the universal kriging predictor. Although the
results were obtained for the case of point observations data the asymptotic considerations for the
integral data are similar.

4.5 Example

To illustrate the behavior of various predictors we consider a simple example shown in Figure 2.1.
The stochastic procegswas generated on a reguldr x 30 grid using covariance functiop(z) =
e~01lzll The realization of the process and the piecewise constant predictor are shown In Fig-
ure 4.1.

Figure 4.1: The sample path ¢fand a piecewise constant estimator.

We obtained optimal values fdry, o) minimizing Equation (2.7) for the parametric form of
covariance function(z) = oe®l*ll. The observed values = [, f(x)dz and optimal values for
(o, 0) are given in Table 4.1.

The predicted surfaces using actual and estimated parameters are in Figure 4.2.
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21 22 <3

280.9808761223(0 220.46143366014 99.605256094011

Parameter Q I5]
Actual -0.1 1
Estimated| -0.0361647| 0.780573

Table 4.1: The observed data with actual and estimated parameters of the covariance function

Figure 4.2: The predicted using actual (on the left) and estimated parameters of the covariance
function.

4.6 Summary

In this chapter we reviewed existing spatial prediction methods that can be used together with the
estimate of the covariance function. Section 4.2 described a general approach for best linear pre-
diction of a continuous spatial process. The method uses the covariance function of the process
to calculate the conditional mean of a Gaussian process (with the same first and second moments)
given the data. Section 4.2.1 considers specifics of prediction from aggregate data. In Section 4.3
we described various ways to estimate the trend of a spatial process using observations that are
integrals of the process. We also present an alternative simple to implement kernel type method in
Section 4.4. This method convolves kernel with a function (not with point observation as is usual
with standard kernel methods) that is constant over the regions where the data was collected. We
provide some informal justification for the use of such a method. Finally, we conclude with a simple
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example to illustrate the prediction methods.
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Chapter 5

Example

5.1 Introduction

Visualization of complex models or data can provide useful insights that are difficult or impossible
to detect in other ways. Here an animation of a function of three dimensions is considered; two
dimensions represent space and the remaining one time. Although showing a set of images in a
rapid sequence (the animation) is not a new concept, the use of this method is new in statistics and,
in particular, in epidemiology.

We describe animation of mumps incidence rates in the United states. In Section 5.2 and 5.3
the data is described. Section 5.4 contains description of the process of producing the animation.
Section 5.6 contains description of the animations of the mumps recorded on videotape.

5.2 Description of the data

The data on the mumps disease that were collected in the United States from 1957 until 1989 by
NNDSS was obtained from the “statlib” library.

e The first dataset consists of the monthly mumps cases for each state in the United States for
the period from 1968 until 1988. The data are not available for some months and in some
states. There are 33 cases reported with an unidentified month in a year.

e The second dataset has sizes of population for every county as given by 1970 and 1980 cen-
suses.

46



CHAPTER 5. EXAMPLE 47

The monthly state data consists of following records:

State Fips Code (year — 1900) | Month | Number of Cases

The number 13 was used for unidentified month. There are 10342 records. The first date of
reporting is January 1968, the last - December 1988. The maximum of the number of cases - 3,298
was reported in Wisconsin in January 1968. The minimum number of reported cases was 1, because
the Centers for Disease Control does not as part of normal processing store zeroes in the data. The
highest incidence rates of the disea® fer 100, 000 population) was reported in lowa on March
1968. The total number of reported cases is 880,240.

5.3 History of mumps in the US

Mumps is a seasonal disease. The peak occurs in early spring, while the lowest incidence rates can
be observed in early autumn. As most of the mumps cases are school age children, this seasonal
behavior can in part be explained by the school year. Over a longer period mumps had higher
incidence rates before state-level vaccination programs started at the end of 1960’s. By the end
of 1970’s these vaccination programs almost completely wiped out the disease, leaving only a few
cases per state per month. Vaccination programs were stopped in some states after awhile and
strong outbreaks of the disease occurred in 1986-1987 and in 1989, primarily among unvaccinated
adolescents and young adults in states without requirements for mumps vaccination. This story
is well supported by the graph (Figure 5.1) of the logarithm of incidence rates in California and
Wisconsin. A seasonal periodicity can be seen (high in spring and low in autumn) and an outbreak
in Wisconsin in the second half of the eighties.

The plot in Figure 5.2 shows behavior of the mumps disease over a longer period of time. The
top of the plot shows the percent of population in the reporting states and the bottom shows the
logarithm of mumps cases in the reporting states. The top part demonstrates that the adjustment of
the bottom plot to account for the cases in non-reporting states is small. The mumps disease had
periodic peaks (every three years) and sharply decreased during the vaccination programs of the
seventies. There is also a big peak in the 1986 when the large mumps outbreak occurred. This plot
was produced using yearly state data. A barely visible dotted line (it is very close to the solid line)
on the bottom part of the plot was produced from the monthly state data summing over the seasons
of disease (from September until August) to reduce correlations between years. The result is close
to the sums over the calendar years. The enlarged version of the two plots is in Figure 5.3
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Figure 5.1: Log of the mumps monthly incidence rates versus months from Jan. 1968 to December
1988 for California and Wisconsin

Figure 5.2: Behavior of the mumps disease from 1953 until 1989
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Figure 5.3: Behavior of the mumps disease from 1968 until 1989 as given by summing over calendar
months (from January until December) in solid line and by summing over the disease season (from
September until August) in dotted line

5.4 Animation techniques

Our goal is to estimate and display a smoothly varying scalar fungtiaith a three dimensional
argumentx, y, t) as was described in the beginning of Section 5.1.
The following features of an animation should be noted:

1) The time dimension is substantially different from space dimensions. The perception of time
and space are quite different. The concept of spatial distribution versus temporal variations at

a fixed location are also dissimilar.
2) The eye can not readily distinguish a single pixel from its neighbors.
3) Nonsmooth changes in time are more difficult to detect than similar changes in space.

The first and third properties suggest that interpolation in space could be done independently of
interpolation in time.

The second property suggests that spatial interpolation could be done to some subset of the
image pixels (preferably a regular grid) and remaining pixels could be filled using simple bi-linear
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(see Section 5.5.4) interpolation. This would save computation time without degrading the perceived
smoothness of the animation.

The next subsection contains description of scaling the animated function (its values and its
arguments) to fit into the range of available colors, pixels, and video frames. Then we do temporal
interpolation to animate the data and do smoothing to the raw data before animation.

5.4.1 Scaling

Once the function of interegtx, y, t) is determined, an animation is like a generalization of plotting

to three dimensions. To produce an animation one has to scale a four-dimensional object into the
graphical device coordinates. Plotting a function of a one dimensional argument only requires
scaling of a two-dimensional object (the values of a function and its argument) to fit on the screen
or paper.

A function of three dimensions has to be scaled to be shown on a device with finite spatial and
temporal resolution. We map the range of the function values into 256 color values. The region
where the function is shown is mapped into @0 x 563 pixels of our display window and the
time interval of one or two minutes (there ar®00 video frames per minute). These values are
limitations of human perception and/or video equipment. According to experiments (see Levkowitz
and Herman, 1992) people can clearly distinguish around 120 ordered color values (i.e., they can
clearly say which color is “smaller” and which color is “bigger”) on the appropriately chosen color
scale. The number of distinct pixels on a television screen is limited by the bandwidth of the display
device screen imposing a range of possible values for two dimensjgngne or two minutes of
technical video is close to becoming boring to anyone other than a subject matter specialist, limiting
possible values in the remaining dimension

Mumps incidence decreases dramatically from 1968 to 1988. In order to better use the color
scale we made a nonlinear transformation of the incidence rates before transforming them linearly
into colors. The transformation we chose was to use the empirical distribution function of the data
so that the resulting colors would be approximately uniformly distributed over the color scale. We
tried using linear and logarithmic scales, but in that case only large variations of incidence rates in
the beginning of the period (1968-1978) were detectable, leaving the later period without visible
action. In the image processing literature such a transformation of the pixel intensities is called
“equalization” (see, for example, Pavlidis, 1982). The actual color scale is displayed at the bottom
of the frame with the corresponding incidence rates given just above the colors.



CHAPTER 5. EXAMPLE 51

5.4.2 Temporal Interpolation

The entire mumps data set consists of 252 months. NTSC video is displayed at the rate of 30 frames
per second (NTSC is the television signal that is used in the United States and Japan). After several
experiments we decided that displaying the data at the rate of 20 frames per month was a reason-
able compromise between the time required to look at the entire data set and the apparent speed
with which changes take place. Thus each month is displayed for two-thirds of one second. If the
recording were done so that twenty identical frames were recorded and then the switch were made
to the next month’s data, the viewer would be distracted by the jumpiness of the resulting images
(see Section 5.6.1). Consequently, we chose to interpolate linearly between consecutive months.
Precisely, the correctly colored maps for two consecutive months are calculated and then 19 inter-
mediate maps are calculated by linear interpolation in the color scale. This results in substantially
smoother appearance.

We considered other types of temporal interpolation (e.g, sinusoidal, trapezoidal, and quadratic),
but linear interpolation seemed to be adequate. Other types of interpolation produced additional
visual artifacts (like monthly swinging) which interfered with the display of seasonal variations
present in the data.

5.4.3 Smoothing Raw Data

Observed data usually contains a substantial amount of noise which, if not removed, can produce a
“jJumpy” animation which, in turn, could hide interesting features of the animated process.

In time series analysis data are frequently smoothed using running averages or running medians
to remove noise. Given a series of observatignshe value of the running median at times

Zik = Median{z; : |[j —i| < k},

wherek is called the size of the running median. Our definition of running median ofksizse
often referred to as “running median 2% + 17, but the latter terminology does not extend to the
multidimensional case.

Tobler and Kennedy (1985) used an interpolation from spatial averages. We use spatial (and
space-time) medians to smooth the data, not just interpolate missing values. We prefer to use medi-
ans (as opposed to averages) because averages are not invariant under the transformation we used.

In the mumps data there are both time and space components, so we could do running medians
in time for every region, do moving medians in space for every time moment, or do running-moving
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medians in time and space together. To define moving medians in space we need to define adjacen-
cies between the locations of observations because the simple (total) ordering by time is no longer
present. In our case, regiorls (states) form a partition ofl (the continental US). We define two
spatial regions to be adjacent (or 1-adjacent) if they share a common border consisting of more
than one point. If there is a region to which they both are adjacent then we call them 2-adjacent.
Note that a pair of regions that are 1-adjacent are automatically 2-adjacent. Similarly we can define
k-adjacent regions. Given the valugsfor regionsA; we define a moving median of size k at the
region A; asz;, = Median{z; : A; is k-adjacent ta4;}. The time dimension can be thought
of as just another space dimension and then we can apply the moving medians in space and time
simultaneously.

We successfully used those techniques to improve the smoothness of animations. We found that
moving medians of size one (in space-time) produce a substantial amount of smoothing (see Section
5.6.1).

5.5 Estimation from Spatial Averages

5.5.1 The Problem

The problem of interest is to estimate a functif(x, y, ¢t) (incidence rates of the mumps disease at
some location and time momefat, y, t) given set{ A, } and dat& z; }. Henceforth we will denote

a space-time location as= (z, y, t) to simplify the notation. The relationship betwegand data

is given by following equation

zj = /XEAj fx)dG(x), j=1,....,N

whered; C A C R? andG(x) is the population distribution.
Assuming thaif (x) is random, one can look for the predictbthat minimizes the mean square
error (MSE),

~

MSE(f(x)) = E((f(x) = f(x))?).
The functionf (x) has to be estimated over some sekaf A C R3, so the integrated MSE
[ MSE(f(x))dx.
JA
or maximal MSE

sup MSE(f (x))
x€A
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could be of interest depending on the problem at hand.
Let f(-) be a zero mean stationary process ajigt) = E(f(x) - z;), and letC = (¢;;) where
¢ij = E(z; - z;). Then the minimum MSE predictor fgfi(x) would be

f(x) = c(x)C 1z, (5.1)

wherec(x) = (c;(x) is a vector of lengthV, C~1 is the inverse of théV x N covariance matrix
for the{z;}, andz = (z;) is the observation vector of lengfii. When the assumption thgt-) is
a zero mean process is unreasonable the mean could be estimated taking global or local averages of
the observations;.

Equation 5.1 has some drawbacks. It requires inversion of the nttaix well as knowledge
of the covariance function of the process to obtiix) andc;;. In the case of observations at a
point (z; = f(x;)) there are parametric and nonparametric ways to estimate the covariance function
(see, e.g., Cressie, 1991). When data are aggregate, as is in our case, it is still possible to estimate
the covariance function (see Chapter 2). Unfortunately, covariance function estimation is difficult
so we also considered alternative simpler solutions.

The estimation problem we are considering could be modified so that the interpolation would
be done given the values (instead of integralsy¥ @t some points. This approach is described in
next section.

5.5.2 Transforming the Problem

For the interpolation problem when data are values of the function at some points there exist a wide
range of fast and simple-to-implement algorithms. A kernel estimatof (foy givenz; = f(x;) is

A o Ez K(vai)zi
109 = S Reom)

whereK (x, x;) is a kernel function. When data are aggregate

I TG
' fAi dG(x)

one could define an estimator by analogy

f(x) _ >z fAi K(x,x;)dG(x;)
> fAi K(x,x;)dG(x;)

To approximate the integralf,. K'(x,x;)dG(x;) we took a sample of points uniformly dis-

tributed within each statd; (see Figure 5.11). The number of points sampled in each state was
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taken proportional to the area of the state. We assigned the value to those points to be equal to the
incidence rate for the particular state the points are in. In this way we take into account the differing
areas and shapes of the states.

These sampled points are used to interpolate a function to every pixel on the map. We used a
weighted combination of the function values at the sampled points to obtain the value at all pixels.
The weight functionk (x, x;) was chosen to be exponential in the squared distance between the
sampled poink; and the pixek where the function was being interpolated.

The method we used to estimatéx) in the animations can be described as follows:

e Choose a set of points and a set of values for evgtyx;; € A;, 25, i =1,...,k;.

— we took the number of points; in the regionA; to be proportional to the area df;.

— The pointsx;; are distributed iM; so that they repel each other and the boundary;of
A point x; 11 ; is sampled uniformly from the set; \ Ui_, 7, wherery, is a disk with
a center ak;;. The radius ofr;, depends on the total number of points to be sampled
from A; and on the size ofi;.

— The values off atx;; are assumed constant for eath z;; = z;.

e Use the estimator S K )
- . i K X, Xz’j Zij
fe = K (%, %45)

with K (x,x;;) = e~ Mg x|,

e Choose the smoothing parameteto provide an acceptable degree of smoothness to the

animation.

5.5.3 Best Linear Unbiased Prediction

Here we implement the methods described in Chapter 2 and Chapter 4.
First we prepare the data, then estimate the covariance function, and, finally, perform the pre-
diction.

Preparing the Data

We consider the incidence rate of mumps (number of disease cases divided by the population size)
for a particular state to be the aggregate measure of the disease in that state.
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Figure 5.4: The approximate boundary of the states

The state is specified as a regionih by a set of its boundary line segments. The boundary was
obtained by taking the boundary line segments expressed as a sequence of points (latitude and lon-
gitude pairs) from the “maps” database available on statlib (e-mail: statlib@stat.cmu.edu, see also
Becker and Wilks (1991)). The boundary was then transformed using Albers Equal Area Projection
with 25 and45 degree base latitudes (see Deetz and Adams (1921)). To speed up further calcula-
tions the boundaries were “thinned” to reduce the number of line segment pieces in the boundary
without changing the visual appearance of the map (at the resolutibd0dfx 607 pixels). The
resulting boundaries were used in the following calculations. Using different thinning parameter we
produced two sets of boundaries shown in Figures 5.4 and 5.5. The approximate boundary shown
in Figure 5.4 was used to check the sensitivity of the estimation on small perturbations of shape.

FunctionsWa 5(1) = [,c4veB, |ju—v|— dudv are plotted for several states in Figure 5.6.

The incidence rates of the mumps (ith state and;’th time period) were transformed to make
the empirical distribution look more like a normal distribution (see Equation 5.2). The logarithmic
transformation is reasonable with the count data (the incidence rates were obtained dividing counts
by the population size). To avoid undefined results when transforming zero counts we took a very
small power transformation equivalent to logarithm. All following inference (up to a different scale
factor) was identical for both, small power and logarithmic transformations.
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Figure 5.5: The exact boundary of the states

Figure 5.6: The function®/4 5 (l) for several states. The abscissas are in miles, the ordinates have

d. . W1/3
no mensmrw
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Cases; (j) 1/100
Population;(5)

Figure 5.7: The values (points) and the trepd) (line) of (

Yy 1/100
Caes) -

Population,(j

vi(J) = <

The values ofy;(j) are plotted in Figure 5.7. The treng(:) = sz:yiik) (only non-missing
k

values were averaged) and the histogram of the resigugls— v;(-) are in Figure 5.8.

To obtain aggregate quantities over the states we multiply the incidence rate by the area of the
state to get the integral of the incidence rate over the state.

24(5) = (:(5) - wi(5)) Area(State;)C (5.3)

Those quantities;(j) were used to estimate the covariance function and to predict the process
representing th@.01 power of the mumps incidence rates. The constamtas used to scale the
sum of squares into the range appropriate for the numeric optimization methods.

Estimating the Covariance Function

We face several questions while estimating the covariance function. Should we estimate the covari-
ance function:

1. for each month?
2. for the months in the second period starting from January 1975.

3. for the average (median) of the observed covariance matrices.
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Figure 5.8: The histogram of the residugl§j) — v (+)
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4. in parametric or nonparametric form?
5. in spectral or spatial domain?

We chose to estimate a parametrie®!*! covariance function in spatial domain. We chose to
estimate the covariance function according to 1), 2), 3) and then to compare the results in Table 5.1.
The estimates of the covariance function have following interpretation. Let half-distance be a
distancel such that the covariance function of the procgsatisfiesy(d)/v(0) = 1 (this definition
makes sense only for a monotone covariance function). The half-distance is the distance at which
the correlations between the values of the process drop to a half. When the half-distance increases
so do the dependencies, when the half-distance approaches zero the process is nearly a white noise.

Prediction

The Best Linear Unbiased Predictor for the zero mean protess points is given by following
Equation.

E(f(s)|z) = (ci(s))(cij) "2, (5.4)

wherec;(s) = Cov(f(s),z), cij = Cov(zi, z;), andz; = [ f(s)ds.

The matrixc;; is computed only once (using estimated covariance function), and an appropriate
submatrix (depending on which states do not report the mumps cases) is inverted for every month.
The vectore;(s) is computed only for the values afon a regular grid (see Figure 5.11). The
processf was predicted only on a regular grid, the time trend (see Equation 5.3) was added, and
then interpolation to every time frame and every pixel was performed as described in Section 5.4.2
and Section 5.5.4.

5.5.4 Two Levels of Interpolation

Estimation using exponential weights for each point as described in Section 5.5.2 can be very time
consuming. The frame buffer (the device that generates the NTSC video signal) has more than
500x 500 pixels. Assuming an average of 10 points in each state where the value of the function
is assumed to be given, we have to perform approximat@lydistance and exponential weighting
calculations for each frame. This is a substantial amount of time even on a fast workstation given
that we want to record 25220 of those frames.
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Estimates for the Mean Covariance Matrix
Case « o Half-distance
All Dataset | -16.5| 672.6 126
First Period | -16.6 | 767.8 125.3
Second Period -16.1 | 480.9 129.2

Estimates for the Median Covariance Matrix

Case o o Half-distance
All Dataset | -17.1| 364 121.6
First Period | -17.7| 501 117.5
Second Period -17.5| 273 118.8

Estimates for Each Month

Function « o Half-distance
Median -18.7| 699 111.2

First Quartile | -26.7 | 535 78.9

Third Quartile | -14.7 | 996 141.5

Estimates for Each Month in the First Period

Function Q@ o Half-distance
Median -17.5| 740 118.7

First Quartile | -25.4| 582 81.9

Third Quartile | -14.1| 996 146.9

Estimates for Each Month in the Second Period

Function Q o Half-distance

Median -20.4| 668 101.9
First Quartile | -28.8| 464 72.2
Third Quartile | -16.1 | 997 129.2

Table 5.1: The estimates of the covariance function. Half-distances are given in miles.
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Consequently the weighted estimation was performed only onto a regular grid over the United
States (see Figure 5.11). We chose the grid size to be 35 points by 25 points. We then used a bi-
linear interpolant from the four values at the corners of each of the 34 times 24 rectangles of the
regular grid to each pixel within a particular rectangle.

K — |k —il L —|l - j|
K-0 L-0 "~

fa =Y  fkD)
k=0,K,1=0,L
where(i, j) are coordinates of a pixel within the rectangkéjs the width of the rectangle in pixels,
andL is the height of the rectangle in pixels. The weights for each pair (regular grid point, sampled
point) are computed only once and stored.

5.6 Videotapes

The animations were produced one after another, improving the result at each step. Despite those
improvements the first steps are of interest by themselves.

The simplest possible animation is to display the raw data: a constant value of the incidence
rates for each state during every month. The result is difficult to understand due to sharp changes
between adjacent states, abrupt changes in time, and abundance of unreported cases. This animation
creates a desire for a smoother picture in space and in time.

A better looking picture can be produced by smoothing the raw data and estimating missing
values. In this case the smoothed data is displayed as being constant across each state and interpo-
lated between months. The interpolation between months removes “jumps” in time. Both linear and
sinusoidal interpolations look reasonably good, but with the sinusoidal interpolation more time is
spent showing actually observed (as opposed to interpolated) values, while it also produces monthly
swinging effect (the picture changes rapidly between the months, and the picture stops changing and
seems to be constant in the middle part of the month) that may interfere with the display of seasonal
variations. Various approaches are possible to smooth the data in space. From a practical point of
view, running medians in space and time (see Section 5.4.3) is a simple method that also fills in the
missing values. Although it is an improvement over the first step this animation still has jumps at
state boundaries.

The last step was to produce a smooth animation both in time and space. This required use of
techniques described in Section 5.5.2 and Section 4.2. The animation that is smooth in time and
space turned out to be visually appealing and easier to understand.
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Figure 5.9: Raw incidence rates in December 1986

A brief description of the equipment we used to produce those animations can be found in Eddy
and Mockus (1993).

5.6.1 Nonsmooth in Space
Nonsmooth in Time

We have used the background color to indicate missing data. The states which are missing seem to
“disappear” into the background when there is no data. An initial version of the videotape switched
instantaneously from a color to background when there was a missing observation and then back to a
color from background when there was data. The abruptness of this scheme was sufficiently jarring
that We modified the scheme to “fade” to background. This is actually done by linear interpolation
between the particular color and the background color. One frame of this animation is displayed in
Figure 5.9.

The time smoothing was performed as described in Section 5.4.2. Simple linear interpolation
in time was the first method we used. We tried other interpolation methods but could not detect any
improvement.
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Figure 5.10: The locations of points used for kernel smoothing

Filling in Missing Data

The number of states not reporting mumps cases increases in the later part of the data. This distracts
the viewer from the overall pattern of the disease. We used methods described in Section 5.4.3 to
fill in the missing values. To indicate the fact that the value was not reported we used a dotted fill
pattern for the particular state. This way it was possible to show the overall predicted pattern of the
disease together with information showing which part of the data was actually reported.

Smoothing in Missing Data

In an attempt to reveal the major patterns in the data we used moving medians as described in
Section 5.4.3 not only to fill in the missing values but also to smooth the existing values. This
resulted in large regions in space and time having roughly the same color.

5.6.2 Smooth in Space and Time

We produced two animations based on smoothing algorithms in Sections 4.2 and 5.5.2 The smoothest
animation was produced using independent time and space smoothing. The smoothing in space was
done for every month. First we estimated the intensity on a re@alar 25 grid of points (see
Figure 5.11) using the algorithm described in Section 5.5.2 and 4.2. The particular set ofkppints
(using the notation of Section 5.5.2) is shown in Figure 5.10.

To obtain estimates for the remaining pixels we used a simple bi-linear interpolation onto a
regular grid (see Figure regular.ps) described in Section 5.5.4. As in previous animations we chose
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Figure 5.11: The regular grid with state boundaries

to interpolate linearly the 19 intermediate frames between the monthly smoothed maps. Thus the
smoothing in space and in time are independent of each other. The single frame corresponding to
December 1986 is displayed in Figure 5.12.

5.6.3 Detecting Disease Outbreaks

As an alternative to showing the incidence of the disease we considered inspection of the residuals
from a simple statistical model. This approach was intended to emphasize outbreaks of the disease
and mask normal patterns such as seasonal variations and different reporting practices across the
states.

In this video we considered the later period of the disease (1980-1988) when the incidence rates
have stabilized after the steep drop that was caused by the introduction of vaccination programs at
the end of 1960's.

Let z;; be the logarithm of the reported incidence rates in stiaemonth; (We added 1 before
taking logarithm to avoid problems with zero incidence rates). We used median polish to fit state
effectss;and time effectg;. The residuals

Nij = Zij — 8i — tj
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Figure 5.12: Smoothed incidence rates in December 1986

for any particular state looked like a stationary time series except for one or two peaks caused by
larger outbreaks.

To emphasize the outbreaks we smoothed out the “small” noise leaving only extreme peaks. We
defined an;; to be unusual if it was in the upper95 quantile of the residuals. We then applied
running medians of size 3 in time for every state to the residuals that were not considered unusual,

i.e. we chose
. { Median(n;; : [j — k| < 3) if n;; was not unusual
Nij =

7;; otherwise.
The resulting animation identifies what one could define as an outbreak of the disease without
confusing the scene with the seasonal and between state effects.

5.7 Discussion

Mumps in the US is a seasonal disease. The peak occurs in early spring, while the lowest incidence
rates can be observed in autumn. As most of the cases are school age children, this can be in part
explained by the school year. Over a longer period the mumps disease had a high incidence rate
before the vaccination programs started around 1970. By 1980 these vaccination programs almost
completely eradicated the disease, leaving only a few cases per state per month. Some states ceased
mandatory vaccination programs at about that time and strong outbreaks of the disease occurred
in 1986-1987, primarily among unvaccinated adolescents and young adults in those states. These
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statements are clearly supported by the graphs in Figure 5.1 of the logarithm of the incidence rates
in California and Wisconsin. We can see seasonal periodicity (high in spring and low in autumn)
and an outbreak in Wisconsin in the second half of eighties.

Annual periodicity in the incidence rate for mumps can be observed in both the raw data videos
and the smoothed versions. The periodic effect is particularly striking in the early years of the data
set, before the widespread use of the mumps vaccine reduced the typical monthly incidence rate
below .1 (cases per 100,000 people). However, the effect can be discerned throughout the data set,
especially in the smoothed version.

The geographic spread of mumps cannot be easily discerned in the raw data; however, repeated
viewing eventually allows one to make such an interpretation. The effect is probably most noticeable
in the winter of 1987-1988 in the states surrounding lllinois. In the smoothed data the geographic
spread of the disease is readily apparent. This is particularly clearly visible during the late winter
of 1986-87 when the disease spreads from lllinois to Arkansas and Tennessee and in the subsequent
winter when the disease spreads to all the neighboring states.

5.8 Summary

In this chapter animation of mumps incidence rates in the United States was considered. First we
described the data which represents counts of the disease for each state for every month from Jan-
uary, 1968 until December, 1988. The data indicate a strong seasonal trend that could be explained
by a school year and a decreasing trend due to introduction of the mumps vaccine at the beginning
of considered period.

In Section 5.4 the techniques used to animate space time data were discussed. The main features
were the mapping of numeric values into color space and the importance of smoothness of the
animation in spatial and temporal domains. Some techniques to reduce the amount of computations
were also discussed.

In Section 5.5 the results from Chapters 2, 3, and 4 were applied to mumps data. First we
considered how the kernel smoothing method described in Chapter 4 can be used to obtain a smooth
function of mumps incidence rates over the territory of the United States. Then we estimated the
dependence structure of the incidence rates process using methods from Chapters 2 and 3.

In Section 5.6 we describe successively smoother animations of the mumps incidence rates
recorded on a videotape. The last animation illustrates a method to detect outbreaks of a disease.
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Contributions and Future Work

The contributions can be shortly summarized by the following list:
1. Estimating dependencies of a spatial process given its integrals.
2. Prediction given integrals.
3. Animation of disease maps.

The real-life data can be often modeled as averages over various regions of some space-time
process. The nature of such process is often stochastic and to perform a reasonable statistical analy-
sis we need to get empirical evidence about process dependence structure. The estimation of the the
dependence structure of spatial process from aggregate data was not considered before. In Chapter 2
we proposed to estimate an isotropic covariance function of spatial process from integrals of that
process.

Having dependence structure of the discussed process we can proceed with various types of
prediction. Prediction from aggregate data is somewhat different from prediction using point ob-
servations. We discuss such specifics and present a new simple to use procedure to predict from
aggregate data in Chapter 4. This procedure is computationally similar to kernel smoothing meth-
ods.

We applied the developed theory and algorithms to animate the spread of mumps in the continen-
tal United States. The developed methodology can be used to animated other (similarly widespread)
diseases. We now have available data for other 19 notifiable diseases for the period from January
1962 until December 1992. Unfortunately, only three of those diseases are relatively widespread,
other are extremely rare.

67
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Directions for the future work are
1. Generalizations of the covariance function estimation:
(a) develop an effective procedure to estimate the covariance function when the data repre-

sents integrals over regions of general form in higher than two dimensions.

(b) develop a method to estimate a generalized covariance functions (not only variogram
and covariogram).

(c) Prove asymptotic properties, e.g., almost sure consistency.
2. Improve prediction theory:

(a) investigate theoretic properties of the kernel type estimators.

(b) finding the optimal kernels corresponding to the estimated covariance function.

(c) obtain uncertainty in prediction due to uncertainty in the estimate of the covariance
function.

3. Apply the developed techniques on other datasets.

4. Develop Bayesian and likelihood approach in estimating dependencies and obtaining predic-
tive distributions.
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Appendix A

Appendix

A.1 Integral Equations for Variogram

Let f(x) be a zero mean stochastic processidn If a quantity p(u,v) = E((f(u) — f(v))?) is
finite and is only a function ofi — v, i.e p(u, v) = p(u — v) then we say thaf has variogranp.
The process having a variogram can be non-stationary, while for a stationary process the vari-
ogram always exists.
Using the notation from Section 2.2 we will express the expected val(ig ofz;)? in terms of
the variogram.

E((z — 2)?) =
2
( / fu) - f(v)dudv> ]
A JA;

~E [ / (F(ur) = F(01)(F(uz) = F(v2)dus .. dw]
A AjL A LA

E

=k /14i,Aj,A¢,Aj k,;,Q(_l)k_lf(xkal)f(xm)dul e dv2]

=k % / ST (DR ((farn) — Flae))? dus - ..dw]
k=12

+E é / > DR (Flann)? + F@12)?) dus - .dv2]

kl=1,2
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L k-1
e -1 — w2)duy ...d AL
2 -/Ai,Aj,Ai,A Z (=1) p(xk,l ml,2) U1 V9 (A1)

i kl=1,2

Now we can use sample values — z;)? to solve Equation (A.1) fop.

A.2 Kinematic Measure

Here | will follow Santalo 1976 pp. 80—92 and Bonnensen and Frenchel 1987 pp. 74-75. First lets
consider a simple example.

Example 2: Let K be any ordered pair of poin{, b) in R? with a fixed distance
apart/|a — b|| = [ (an oriented stick). The movements of the stick can be parametrized
in terms of the displacemext of its first enda and by rotationx with respect to its
original orientation. The new Cartesian coordinates for the ends of the stick after the
movement(q, «) are (a+ q,a+ q + (lcos(a),lsin(«))) assuming that the vector

b — a was oriented in the direction af coordinate axis.

We might be interested in some subset of all possible movements of the stick (all pos-
sible movements arg@ € R?, o € [0,27)). For example, we consider all movements

of the stick K such that it has first end inside a circle with radiuand center at the
origin. Using the parametrizations of the movements we need to find all gpairso
that|la+ q| < randa € [0,27). Integrating all those movements with respect to
dqda we get the “measure” of all such movements t@be? x 27

Let a setM of geometric objects be given. For example, a set of points, a set of lines in plane
or in space, a set of planes, a set of point pairs with a fixed distance, etc. To such a set we assign
a “measure”. Let an element @ (point, line, plane) be determined by independent coordinates
(a1,...,ar). Let f(aq,...,a) orbriefly f(a) be an (initially arbitrary) positive function ef. By
the measure (M) of M we mean the integrgl f(«)da extended oved (M and f are supposed
to be such that this integral is meaningful). The usual condition imposed on the arbitrary “density
function” f is that the measure of a skt remains unchanged under motions. In other words: If the
setM goes toM by means of a motion, then we should hany@/) = u(M). This requirement
identifies functionf up to an arbitrary positive factor, for sets of points, lines, and planes.

We will consider points and sets of points on the Euclidean plane with rectangular system of
Cartesian coordinates. A motion is defined as a transformation of the plane onto it$&(, y) —
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P'(2,y') represented by the equations

¥ =2xcosd —ysing + a

Y =xsing+ycosp+b
wherea, b, ¢ are parameters that have the following respective ranges:
—o<a<oo, —0o<b<oo, 0<¢ <27,

Let a pair of pointsA4, B with a fixed distancé apart (we will refer to it as “a segment”) be
given. Letz, y be Cartesian coordinates of the paihanda be the angle between the r@ and
the & axis of the coordinate system. Three componéntg, o) will fully specify the position of
the oriented segmentB.

A kinematic density functiorf (of the segment B) invariant under the motion would satisfy
the equation

/Mf(x,y,oz)dxdyda = /M/ f(z,y, a)dxdyda (A.2)

whereM’ is obtained fromM/ by means of the motion

¥ =zcos¢ —ysing +a
Yy =xsing +ycose+b
o =27+ a— ¢) mod 27

Arbitrariness of the movementand Equation (A.2) imply thaf (z, y, ) is a constant. So the
kinematic density for the segment is a constant.

To determine that constant and obtain relation to the weight funétian, (/) consider trans-
formation of variables in Equation (2.4). The transformation is from Cartesian coordinates, x2, y2)
to the coordinategry, y1, 1, ¢), wherel = ((z1—22)%+ (y1—12)%)2, ¢ = tan((y1—y2)/(z1—12)).

The Jacobian is
0

0 1

1 0 1
0 cos(¢) —Isin(¢)
0 sin(¢) lcos(o)

Let AN B = (andletM (I, A, B) be the measure of all movements of an oriented line segment

1
0

-y (A.3)
0

0

of lengthl with one end in the set and the other in the sé. Letu = (z1,41), v = (22, y2) then
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using Equation (A.3) we get

Waa(l) = / dudv
u€AVEA,||lu—v||=l
- / ldzydy1d
(z1,y1)EA,(z1+ cos(9),y1+Isin(¢))€A
— M(l, A, A, (A.4)
1
Wagp(l) = (/ dudv + dudv)
2 \ JueAweB,|lu—v|=l wEBWEA |Ju—v|=1
1
= */ ldwldyldgi)
2 (z1,y1)€A,(z1+ cos(d),y1+Isin(¢))EB
1
+= ldx1dy1do
2 (z1,91)€B,(z1+! cos(¢),y1+Isin(p)) €A
— M, A B)/2, ANB=0 (A.5)

the two cases are different because obtaidiriglEquation (1.1)) we specify which end of the
segment is in which set.

A.3 A Segment Intersecting Two Other Segments

Equation (3.5) is obtained in Santalo 1976. Equations (3.6) and (3.7) are obtained similarly, so | will
derive only equation (3.6). For Equation (3.6) I will consider the situation as shown in Figure A.1.
I will first fix angle ¢ or m — ¢ the segmenk has with rayR(Acco) and calculate the measure of all
non-rotational movement®/ (¢) (for two fixed orientation ofK’) so that the segment crosses rays
R(Aoco) and R(OG). Then | will integrate theM (¢) + M (r — ¢) = 2M(¢) over the range of
possible values fop when¢ C [0, 7).

From Figure A.1,M (¢) is equal to the area of the triangleF'G. So 2M(¢) = (JAF| —
|AE|)|AH|sin(¢). In the notation of Equation (3.6):

OA] = Iy

AF| = |HG|=1
OH|sin(a) = |HG|sin(é— a)
|OA]/|OH| = |AE|/|HG]

Using those equations we get

(|AF| - |AE[)|AH| (|AF| = |AE[)(|OH] - |OA])

— lly(1-C)(1/C — 1),
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Figure A.1: The area of the filled triangleF'G is the measure of all non-rotational movements of
the segmenk when it intersectd?( Aoco) and R(OG)

where
C = |0A|/|OH| =15/|0H]|
= 1o/ (|HG]sin(¢ — a)/sin(a))
la sin(a)
[sin(¢p — )
and hence b »
2M(6) = sin(0) (1 - Siif;“fa;)) ( ng( = a) ~1a), (A6)

and integrand in Equation (3.6) follows.

To get the limits of integration in Equation (3.6) consider extreme orientations of the segment
K when it can intersecR(Aoco) and R(OG). Minimal angleg, can be obtained using equation
losin(a) = Isin(¢g — ), and maximal angle is eitherr (if o < 1) or ™ — ¢y.

A.4 Consistency of the Step Estimators

Let f(x) be a stationary zero-mean stochastic proces?’mith an isotropic covariance function
(i.e.,v(z1,z2) = v(]|z1 — z2||) is a function of the distance betweenandz,). The observations
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z; of this process have following formg; = fAi f(z)dz, whereA;,i = 1,..., N partition region
A.

Letly, k=0,..., K bean ordered sequence of real numbers lyith 0. A piecewise constant
estimatory(l) = >>; Iy, ..., (1) of the covariance function is given by following equation:

2
4 = arg HL/IHZ (Cij(zizj — /’y(l)Wij(l)dl)> (A7)
1,J

whereC;; are weights (for example);; = ST S where Sy, is the area of the regiod;) and
W is defined by Equatiorf, [ dudv = [3° WAB(l)dl for any two setsd and B. Letp;;; =
Cij fll"“ Wi (l)dl andZ;; = Cjjziz;. Then Equation (A.7) can be rewritten as

arg min Z ( -> m%,z) (A.8)
’Yk’k 17 9 l

The solution to this quadratic minimization problem is the same as the solution to the system of
linear equations (we assume the maffiX P to be invertible)

PTpy=pPTZ, (A.9)

where the vectoty = (v;), the matrixP = (p;;;) (note, that; is an index for rows antlis an index
for columns), and the vectdf = (Z;;).

We will consider asymptotic behavior of a sequence of estimatitsasq — oo. To simplify
the notation we will omit the indekg) in this sequence. All asymptotic conditions will be given in
terms of this implicit indexq).

The unique solution to Equation (A.9) (" P)~'PTZ if PTP is invertible. LetM =
(PTP)~'PT. The expected value of

E(y) = (P'P) ' PTE(2)

- M / (CisWis (D)~ (1) dl
1k+1

= MZ/ (Ci;Wij ()~ (1) dl
- WY [ sy ) 6w +aw)a
= MZ pz]k lk —‘rMZ/ C’LJW’L] )fk()

= (P"P) PTP(1) + MY /l (CsWiy () & () dl (A10)
k k
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wheregy. (1) = y(lg) — v(1). Let&y = sup;, 1y, ., [k (1) | then ifmaxy, § < oo
[E(yk) — v(l)| < &k (A.11)

In particular, wheny(l) satisfies a Lipschitz condition (i.e., there exist a conskast oo such
that forVe > 0 36 > 0 : VIl and Vo < §, |y(I) — (I + 2)| < he), PTP is invertible, and
maxy({x+1—1;) — 0the estimator is asymptotically unbiased as stated in the following Proposition.

Proposition A.4.1 Let~(l) satisfy a Lipschitz conditior,P(9)” P(9) be a sequence of invertible
matrices,lim,) maxy (1%, — 119) = 0,1 > Ix, andl{? < ly. Thenlim E(3(@(1)) = (1) for
anyly <l <lg

The covariance matrix for the estimatpiis
E(v")-EME () =B (MzZ"M") - ME (2)E (2") M"

= F <MPP—ZZT (PT)7 PTMT> — MPP E(Z)E (ZT) (PT)* PTMT
= E (PZZT (PT)) - P E@Z)E(Z")(PT)

= ( Z pi_j,kp;m,lE (leZmn)) - ( Z pi_ngp;m,[E (sz)E(Zmn))

(i5),(mm) (i5),(mn)

= ( Y PiysPmni (B (Zim) E (Zjn) + E (Zin) E(ij)))
(i4),(mn)

where P~ = (p%7k> is Moore-Penrose inverse of the matix The last equality was obtained

using a formula for the fourth centered moment of the multivariate normal distribution (see, e.g.,

Anderson pp. 39).
The quantity

E pz] klpmn kg J" E ng k:lpmn ko

(i5),(mn) (i5),(mn)

Ikt I+
<szm k’Y lk / CimWMn ) (Z Pin, k'Y lk / C]nWJn(l)fk(l)dl> (Alz)

is the first term of the the covariance betwegnand-,, (the second term has the same expression
only the subscriptm is changed tan and the subscripin is changed tgm. If v(I) satisfies a
Lipschitz condition andnaxy(lx+1 — l) = 0, the expression A.12 can be simplified as the term
including& (1) is much smaller than the term includingl). The result is:

> Pk Prns P R Y PP <Z Pimuy(lu ) (Z Pinwoy(le) ) (A.13)

(i5),(mn) (i3),(mn)
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Proposition A.4.2 Let (1) satisfy a Lipschitz conditior{,P(9)” P(9) be a sequence of invertible

matrices lim,,) maxk(l,g‘ﬁl — l,(f)) =0, l%) >k, l(()q) < lp, and the sum

S e, (80 B, 4wl o ) A ) (1)
(33),(mn),u,v
tends to zero ag — .
Then the covariance of the estimatan, ... Cov(3@(11),4@ (13)) = 0 for anyly < I1,1> <

K.

To investigate the last condition in the proposition we need to discuss properties of the matrix
P which depend on the geometry of regiaAs We will use two measures for the size of a region
in R™.

Definition A.4.3 The outer diameter (or diameter) of a regighis

D(A) = sup |z —y]

T€AYeA
where|| - || is Euclidean distance. In words: the outer diameterdf the diameter of the smallest
sphere containingl.
The inner diameter of a regioA is

d(A)= sup R
c¢(R)CA

wherec(R) is a sphere of diameteR in R™. In words: the inner diameter od is the diameter of
the largest sphere contained ih
The inner distance betweehand B is

d(A,B) = xeixnfeB llz — vyl

)

The outer distance betweehand B is

D(A,B)= sup |z —yl.
reA,yeB

Let D = max; D(AZ), andd = min; d(AZ)
We will assume several conditions on the asymptotic behavior of the regions and on the smooth-
ness of the covariance function. Those assumptions can be relaxed.
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1) ~ satisfies a Lipschitz condition. It is a sufficient condition for the sample paths to be differ-
entiable (see, e.g., Cramer and Leadbetter, pp. 125).

2) I /d(A) — 0.
3) D—0.
4) D/d=0O(1).

5) man(lk — lkfl) — 0.

D

) min, (lp—le—1) 0

Condition (1) and (5) together with Equation (A.11) imply asymptotic unbiasedness.

To prove consistency we need to show that the varianeg gbes to zero.

Condition (6) makes the matriR” P asymptotically tri-diagonal agi; xpij; 7 0 only when
Z-j Dij,kZij

=w_— - and

Zi]’ (pijvk)Q

|k — I| < 1. The non-diagonal elements are small;gox

1
(s pis)? Z PijkPrn kB (Zij Zmn) — E(Zij) E(Zmn)
1y ],

~ 1/02 Z Dij,kPmn,k (pim,upjn,v + pin,upjm,v) V(Zu)’}/(lv)

J,mn,v,u

E (%) - B(w) =

13, mn

whereC = ——1—. Compare this expression with Equation A.13. Now we will show that

(Zi]’ (pij,k) )

1/02 Z pz’j,kpmn,kpim,upjn,v’}/(lu)’Y(lv) (A14)

iJ,mn,v,u

tends to zero under the conditions (1)-(6). The basic idea is that the majfrixcontains mostly

zero entries. As the covariance function is bounded (it is automatically bounded when it satisfies a
Lipschitz condition) it is enough to show that the sum given jxy? > ijmmnv Pij kPmn kPimuPjny —

0. Condition (6) implies that the matrix; , has no more than three nonzero entries in one row (the
rows are indexed byy), Condition (2) implies that most of the rows are all zeros as only the rows
corresponding to the pairs of regions that h@wed;, A;) < [k can have nonzero entries. If the
total number of regions is, then the bounds on the number of pairs of regions satisfying this condi-
tion are fromn x (1% /D?) ton x (%, /d?), i.e., for each region; we draw a circle with radiuky

and the smallest region has diameteso there are no more thai?, ”TdQ regions inside this circle.

The biggest region has diametBrso there are no less thémi%. / D?) regions inside the circle.
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When we take the produ@jijmn?v,u Dij kPmn,kPimuPjn,y WE Can just sum only over the set
of indexesij andmn such thatD(A4;, A;) < lx andD(A,,, A,) < lkx. In addition, we are can
restrict the sum to terms when,, pim. # 0 and)_, pjn.» # 0. Those we have four conditions for
a term indexed byij, mn) to be nonzeroD(A;, A;) < Ik, D(Am, An) < Ik, D(A;, An) < Ik,
D(Ay, Ap) < lx. We can calculate that there are no more thandl2. /d? x 412 /d* x 412 /d? =
n (“TK)G terms that are nonzero, i.e., we can takdifferent regionsA; and for each regiod; there
are no more thanl?. /d? regionsA; distancel i or less away , and no more that}, /d? regions
A, distancelk or less away. For each triplet;, A;, A, there are no more thaéﬁ%(/dQ regions

2
A, distancd k or less away from botl,,, andA,. The sum in the divisof? = (Zij (piM)Q) =

4
S isamn (Pijk)” (Pmnyk)? has no less thafn x (1% / D?))? = n%n? (%) nonzero terms. The ratio
of the number of nonzero terms in the numerator and the denominator of Equation (A.14) tends to
zero

6
n (%) 44 48, )? D*
202 (%)4 72 n d4

4 I jd Dt
72 d(A)2/d? d*
46 2. D4

= ST 0. (A.15)

using Condition (2). To conclude the proof that Equation (A.14) tends to zero we notice that the
number of terms in th&' that are not of the order of (for C;; = 1/(S4,54;)) is negligible

with respect to the total number of terms. The tewyy, = C;; fllk’““ WAiAj(l)dl . The quan-

tity fll:“ Wa,a,(D)dl = Sa,Sa; if D(A;; Aj) < lpy1 andd(A;, Aj) > 1. For such pairs of
regions takingCy; = 1/(Sa,54;) thep;;, = 1. When0 < p;; < 1 we must have asymp-
totically D(A;, A;) > lp11 andd(A;, Aj) < lgpq or D(A;, Aj) > 1 andd(A;, Aj) < [, as
D/maxy(lx+1 — l) — 0 by condition (5). The number of pairs of regions tat satisfy either re-
lationship is no more thaly;, ((Ix + D)? — (I — D)?) /d*> = AD Y"1 /d* < ADKl/d*. The

total number ofp;;;, > 0 is no less thanri% /D?. So the ratio is no greater th,—Ji‘piéilf%/jl2 =

A/m g D2 [d? > 47 P~ D? /d* — 0 by Condition (6).

mink(lk_;,_l—lk)
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Appendix

B.1 Software to Calculate the Weight Functiondl?’

The weight functiorl? is important when estimating a covariance function or simulating integrals
of a stochastic process when the covariance function is known. The funigtiandefined as the
following integral:

Wag(l) = / dudv
u€AweB,|lu—v||=l

The functionWAZ.Aj (t) is obtained using Theorem 3.5.4, and Equations (3.9, 3.5, 3.6, 3.7, 3.8). The
functionKMeasure(l, N4, N, 0A, OB) (in file geom.cc) calculates a kinematic measure of a line
segment of lengthwith its first endpoint inside the set and the second endpoint inside the Bet
This quantity is exactly¥/ 45 (1)/I. The function requires that eithern B = () or thatA = B.
The simple generalization of the function for arbitrary two sé@®nd B can be implemented using
Theorem 3.5.4.

The precision (and correctness) of the code can be checked using the relationship:

/ Wap(l)dl = SaSp
0

whereS 4, Sp are areas of the polygons B. Those areas can be calculated exactly and compared
with the integral on the left. We took two maps of the continental United States (Figures 5.4,
and 5.5). Both maps contain 49 regions (there are two separate regions for Michigan state) and we
computed alt9(49,)/2 = 1225 different integrald;; = f;g Wa,a,(1)dl and compared them to the
exactvalues' s, S4,. The boundaries for the integration were takgn= inf,c 4, vea; [u—v| and

bij = SuPyea;, vea, llu — v[|. The integrals were computed using Gauss quadrature with Legendre
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Percentile
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-0.00821244

-2.04368e-05

8.01375e-07

2.33429e-05

0.00302665

-0.00263325

-1.27446e-05

-2.73902e-08

1.02901e-05

0.00392718

Figure 5.4

Table B.1: Percentiles of the relative error

weights (software to compute those quadratures can be obtained from netlib using coatmand

"send gaussqg from go" | mail netlib@ornl.gov

. . . I;;—Sa.54; .

integral. Several percentiles of the relative eﬁw (from a sample of 1225) are in Table B.1
i

) using 81 points to evaluate the

B.2 Software to Estimate a Covariance Function

The software is designed to estimate the covariance of an isotropic zero mean stationary process
in R? given integrals; of the process over disjoint regionsd;. In practice the “zero mean” is
achieved by removing the trend via local or global averages (see Chapter 4).

The calculations are done in two steps. The first step requires borders of the rdgiand
pre-calculates the quantitiéﬁj; = Wa, 4, (13, for a set of values;; . defined by Gauss-Legendre
quadrature on intervalénfyc a,, ve4; [[u — vl SuPuea,, vea, lu —vll]-

In the next step of the program we take the valueg;; 5, andWi’j- and solve Equation (2.7).

The minimization is performed as follows:

1. Initial point7yg is chosen to be used in the next step by the local minimization procedures.
The point is chosen by using “bayes1” global minimization routine (see Mockus (1989)).

2. Two different local optimization procedures are then used to improve the estimate. The first
procedure uses NLPQL algorithm described in Schittkowski 1986 and the second procedure
uses quasi-Newton method (see, e.g., Dennis and Schnabel (1983)) and active set strategy
(see, e.g., IMSL (1991)).

3. The best result (the one that minimizes the sum of squares) is chosen.

B.2.1 Forms of the Covariance Function

The various parametric and nonparametric forms of the isotropic covariance function are described
in Section 2.2 and Section 2.3.1.



Appendix C

Code Listing

C.1 kmeasure.h

#ifndef KMEASUREH
#define KMEASUREH

# define M_PI 3.14159265358979323846

/+ A measure of a segment |

* intersecting parallel segments |1 and 12

* which are distance d apart and shifted by s

*/

double parallelM (double I, double 11, double 12, double d, double s);

/+ A measure of a segment | intersecting two rays
* starting at the same point with an angle alpha
*/

double fullM (double I, double alpha);

/* The same as fullM, but we remove pieces of each ray of length

* 11 and 12 correspondingly. The removed pieces start at the origin.
*/

double OutMeasure(double I, double I1, double 12, double alpha);

inline double dmin (double a, double b){ if (a < b) return &; else return b; }
inline double dmax (double a, double b){ if (a > b) return a; else return b; }
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#endif

C.2 geom.h

#ifndef GEOM.H
#define GEOM.H

typedef struct {
int x, v,
} intPoint,

#ifdef __cplusplus
extern "C" {
#endif 10

/* Calculate Kinematic measure of the movements of an oriented segment of
* length | so that it starts and ends within nonintersecting

* polygons a and b accordingly.

* All polygons must have boundary vertices with same (clockwise

* Or counter-clockwise) orientation.

*/

double KMeasure (double I, int an, int bn, intPoint * a, intPoint x b);

/* Area of the region:/ 20
double area (int NPoints intPoint x p);

/* Perimeter of the regior/
double perimeter (int NPoints intPoint * p);

/* Is the boundary of the region clockwise?
int isClockwise (int NPoints intPoint « p);

/* Inner distance between the curve a and the curvge b
double innerDistance (int na, int nb, intPoint « a, intPoint x b); 30

#ifdef __cplusplus

}
#endif
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#ifdef __cplusplus
#include "kmeasure.h"

inline double distance2 (intPoint& a, intPoint& b)

{

return (@ X — b X) x (@a . x — b x) +
@y -—-—b.y=x@.y—Db.ly;

class Point {
public:
double x, v;
Point (double xx=0, double yy=0) { x = xx y = yy;};
Point (Point& p) { x = p Xy =p .V}
Point (intPoint& p) { x = p Xy =p .y}
Point operator— (Point& p) { Point ans(X — p .x, y — p .y); return ans };
Point operator+ (Point& p) { Point ans(x + p .x, y + p .y); return ans };
int  operator== (Point& p) { return (x == p X && y == p .y);};
int  operator> (Point& p) { return (x >= p X) && (y >= p .y):}
int  operator< (Point& p) { return (x <= p X) && (y <= p .y);};

double norm () { double tmp = (xxx + yxy); return tmp };
double operator« (Point& p) { return (x « p X + yx p .y); };
int  between(Point& a, Point& b);

b

class Line{

public:
double a, b, c;
Line (Point& a, Point& b);
Point intersect (Line& line);
int parallel (Line& line);
double distance (Point& point);

I

class Segment{
public:
Point from to;
Segment(Point& f, Point& t) : from (f), to (t) {;};
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double innerDistance (Point& p);

double outerDistance (Point& p);

double innerDistance (Segmer& S);

double outerDistance (Segmer& s); 80

double KMeasureSegmenfdouble |, Segmer& a, Segmer& b);
int Between(Point& O, Point& a, Point& b);
#endif

#define MIN(a, b) (8 < (b)) ? (@ : (b))
#define MAX(a, b) (@ < () ? (b) : (&)

90
#endif

C.3 Anh

#ifndef A_H
#define A_H

void quadrature (double x1, double x2, double xx, double xw, int n);

typedef struct {
int nPoints
int minX minY, maxX maxy,
intPoint « line;
} Border, 10

class Covariance {
public:
int type // O for sigma é (alpha x),
// 1for step function
int nBins
double range * values
double alpha sigma
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h

Covariance (double alp=—1, double sig = 1);
Covariance (int nBin, double rang, double x vals)

{type = 1; nBins = nBin; range = rang; vals = values};
double operator ()(double x);

class A {
private:

double (A: xmeasurg (double Xx);
double pureMeasure(double x);
double convol (double x);

public:

1

int i, j;
int nRegions
Border * border,
double * areas
double SCALING // The constant (Sum(area$g/2)) to keep the
// weights (array Values) invariant to the scaling

// To getunscaled version multiply Values by SCALING.

int minX, minY, maxX maxy,

double *x Values
double *x xes **x wus
double diam

int nCells

Covariance * gamma

A (char x fname int pure = 1, int preCalculate = 1);
void writeW (char x fnam@;
void readW (char * fname);

double kmeasure(double x) {return (this —>xmeasurg (X);};

double qgaus (double a, double b, int n = 30);
double gfast (void);

Point Range(Bordet& a, Bordet& b);
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#endif

90

C.4 kmeasure.cc

#include <streamh>
#include <mathh>
#include <float.h>
#include "kmeasure.h"

/+ A measure of a segment |
* intersecting parallel segments I1 and 12
* which are distance d apart and shifted by s
*/
double parallelM (double |, double |11, double 12, double d, double s)
{
if | <=d]||]11==01]]I2==0)
return O;
if (d == 0){
double x = dmin (11, stl2) — dmax (0, 9);
if X <= 0)
return O;
else
return 4 x X x |;
}
if (I1 > 12){// make sure Ik I2
double tmp = 12;
s=12 +s — 11;
12 = 11;
11 = tmp
}
if (s+ 12/2 < 1/2)// Make sure the middle of 12 is to the right
// of the middle of I1
s=(-s+ 1) — 12

double phi0 = asin (d/I);
double phil = M_PI — phiG;

10

20

30



APPENDIX C. CODE LISTING

double phiA, phiB, phiOMinAB phiMaxAB1
double ans = 0O;

phiOMinAB = M_PI/2 — atan2 (s + 12, d);
phiMaxABl1 = M_PI/2 — atan2 (s — I1, d);

if (phiMaxAB1 <= phi0 || phiOMinAB >= phil)
return O;

phiA = M_PI/2 — atan2 (s, d);

phiB = M_PI/2 — atan2 (s + 12 — I1, d);

phio
phil

dmax (phiO, phiOMInAB);
dmin (phil, phiMaxABY;

double cosphiO = cos (phi0);
double sinphiO = sin (phi0);
double cosphil = cos (phil);
double sinphil = sin (phil);
if (phi0 > phiA){
/ /readlibreadlib(C):
//intint((1xsin(p)-d)(Ixcos(p)-s1),p=phi0. .phil);
double s1 = s—I1;
ans = —Ixlxcosphikcosphil/2 +
Ixslxcosphil-d«lxsinphil + dxslxphil +
IxlxcosphiGcosphiQ2 — l«slxcosphiO +
dxlxsinphi0 — dxs1xphiG;
telse(// phi0 <= phiA
if (phi0 < phiB){
double s2 = sti2;
double cosphiB = cos (phiB);
double sinphiB = sin (phiB);
//intint((Ixsin(p)-d)(s2-dkcot(p)),p=phi0. .phiB);
ans = —Ixs2xcosphiB — dxl«sinphiB
— d«s2«phiB + dxd«log(sinphiB
+ lxs2«cosphiO + dxlxsinphiO
+ dxs2«phi0 — d«d*log(sinphiQ;
phi0 = phiB;
cosphiO = cosphiB
sinphi0 = sinphiB
}// now phi0O>= phiB;
//intint((Ixsin(p)-d)}I1,p=phi0. .phiA);
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double cosphiA = cos (phiA);

double sinphiA = sin (phiA);

ans += —(IxcosphiArd«phiA)xl1+(IxcosphiG-dxphi0)xI1;

double s1 = [1-s;

//intint((1xsin(p)-d)(s1+dkcot(p)),p=phiA. .phil);

ans += —lxslxcosphil + dxlxsinphil
— d#slxphil — dxdxlog(sinphil) 80
+ lxslkcosphiA — dxlxsinphiA + dxslxphiA
+ dxdxlog(sinphiA);

}
if (ans < 0){
cerr << I << """ <<l << " <2 << <<d << " << s
cerr << " Less than O in parallelM " << ans << "\n"
ans = 0;
}
return 2xans 90

static inline double closedForm (double |, double alpha double li, double phi)
{
/* return Zlxli x (1+cos (phi)) - I (sin (phi) x sin (phi)/2 +

cos (alpha) sin (alpha)« sin (2«phi) / 4) +

(lixli * sin (2«alpha) + kl x cos (alpha) sin (alpha)} phi/ 2 +

lixli % sin (alpha)x sin (alpha)« log (sin (phi - alpha));

double cosP = cos (phi); 100
double sinP = sin (phi);

double cosA = cos (alpha);

double sinA = sin (alpha);

double ctgA = cosA/sinA

double Il = [xl;

double lili = lixli;

if (sinP«cosA — sinAxcosP < DBL_EPSILON{

return O;
} 110
return 2xlxli % (1+cosP — Il % (sinP + ctgAxcosPxsinP/2

+ (lili * sinAxcosA x 2 + Il x ctgA) = phi / 2

+ lili * sinAxsinA x log (sinPxCosA — sinAxcosP);
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/+ A measure of a segment | intersecting two rays

*

*/

starting at the same point with an angle alpha

double fullM (double I, double alphg)

{

double sinA = sin (alpha);
double cosA = cos (alpha);
return | « | = (1 + (M_Pl — alphg = cosA / sinA / 2;

/* The same as fullM, but we remove pieces of each ray of length

*

*/

11 and 12 correspondingly. The removed pieces start at the origin.

double OutMeasure(double I, double |1, double 12, double alpha)

{

if ( (11 +12)/I < DBL.EPSILON && alpha > DBL_EPSILON {
return fullM (I, alpha);
}
double cosA = cos (alpha);
double sinA = sin (alpha);
double philQ phill, phi20, phi23
double FirstTerm = 0, SecondTerm= 0;
int noSecondTernF O;
if (cosA > 0){ // alpha< Pi/2
if (12 % sinA>=1|] 11 % sinA >=
return O;
telse
phil0 = asin (12/lxsinA) + alphg
if (11 > 12 % cosA{
phill = alpha + atan2 (12 * sinA 11 — 12 % cosA;
telse{
if (11 < 12 % cosA — Ixsin(M_P1/2 — phil0 + alphg){
phill = M_Pl — phil0 + alpha + alphg
noSecondTersd;
telse(
phill = M_PI + alpha — atan2 (12 * sinA 12 * cosA — I1);

A

}
if (phill > phil0 + FLT_EPSILON

FirstTerm = closedForm (I, alpha 12, phill) —
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closedForm (I, alpha 12, phil0);
if (InoSecondTerj
phi20 = asin (11/IxsinA) + alphg

if (12 > 11 % cosA{
phi21 = alpha + atan2 (I1 * sinA 12 — 11 x cosA;
telse
if (12 < I1 % cosA — Ixsin(M_P1/2 — phi20 + alphg){
phi2l = M_PlI — phi20 + alpha + alphg
telsg{
phi2l = M_PI + alpha — atan2 (I1 * sinA 11 x cosA — 12);

}
if (phi2l > phi20 + FLT_EPSILON
SecondTerm= closedForm (I, alpha 11, phi2l)—
closedForm (I, alpha 11, phi20);

}
}
telse { // alpha> Pi/2
if (12 >=11]]11 >=1){
return O;
telsg
phil0 = alpha + asin (12 = sin (M_PI — alphg/l);
phill = alpha + atan2 (12 * sinA 11 — 12 % cosA;
if (phill > phil0 + FLT_EPSILON
FirstTerm = closedForm (I, alpha 12, phill) —
closedForm (I, alpha 12, phil0);
else
FirstTerm = 0O;
phi20 = alpha + asin (I1 * sin (M_PI — alpha/I);
phi2l1 = M_PI + alpha — phill;
if (phi21 > phi20 + FLT_EPSILON
SecondTerm= closedForm(l, alpha 11, phi2l) —
closedForm(l, alpha 11, phi20);
else
SecondTerm= 0;
}
}
if (SecondTerm< 0 || FirstTerm < 0){
cerf << I << """ <<l << """ << 2 <<

<< alpha << " " << FirstTerm << " " << SecondTerm<< " Less than O\n"
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if (SecondTerm< 0)
SecondTernF O;
if (FirstTerm < 0)
FirstTerm = O; 200

}

return FirstTerm + SecondTerm

C.5 geom.cc

#include <streamh>
#include <stdiah>
#include <mathh>
#include <float.h>

#include "geom.h"

double distance (intPoint& a, intPoint& b)
{ 10
double tmp = (a X — b X)x(@ x — b x) +
@y —-—buy=*@y—Db.y);
return sqrt (tmp);

// inner distance between point t and segment from-to
double innerDistance2 (intPoint& t, intPoint& from, intPoint& to)
{
if (distance2(to, from) < DBL_EPSILON
return distance2 (t, to); 20
double T = (t .x — from X)x(to .x — from .x) +
(t.y — from.y) % (to .y — from .y);
if (T < 0)
return distance2 (from, t);
elsg

double T = (to .x — t X)*(to .x — from .x) +
(to .y — t .y)x(to .y — from .y);
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if (T < 0)
return distance2 (to, t);
else
double a2 = ((t .y — from .y)x(to .x — from .xX)—
(t x — from X)x(to .y — from .y));
double tmp = fabs (a2) / distance2 (to, from);
return tmp

// Inner distance between curve a and curve b
double innerDistance (int na, int nb, intPoint x a, intPoint % b)
{
double dist = distance2(a [0], b [0]);
for (int i = 0; i < na i++)
for (int j = 0; j < nb; j++){

double tmp = innerDistance2(a [i], b [j], b [(j+1)%nb]);

dist = dmin (dist, tmp);
}
for (i = 0; i < nb; i++)
for (int j = 0; ] < na j++){

double tmp = innerDistance2(b [i], a [jI, a [(j+1)%nal);

dist = dmin (dist, tmp);

}
return sqrt (dist);
}
double Line:distance (Point& to)
{
double den = sqrt (axa + bxb);
if (b!=0)
return (to .y = fabs (b) + a * to .x + c)/den
return (to .x = fabs (@ + b = to .y + c)/den
}

double SegmentinnerDistance (Point& t)
{
double T = (t .x — from .X)*(to .x — from .x) +
(t .y — from .y)x(to .y — from .y);
if (T < 0)
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return sqrt ((from — t) .norm ());

elsg

double T = (to .x — t .X)*(to .x — from .x) +
(to .y — t .y)x(to .y — from .y);

if (T < 0)
return sqrt ((to — t) .norm ());

elsg

double a2 = ((t .y — from .y)x(to .x — from .xX)—

(t x — from X)x(to .y — from .y));

return sqgrt (a2 * a2 / (to — from) .norm ());

}
}
}
double SegmentouterDistance (Point& t)
{
double al = sqgrt ((from — t) .norm ());
double a2 = sqgrt ((to — t) .norm ());
return MAX (al, a2);
}
double SegmentouterDistance (Segmer& t)
{
double al = outerDistance(t .from);
double a2 = outerDistance(t .to);
return MAX (al, a2);
}
double SegmentinnerDistance (Segmer& t)
{
double al = innerDistance (t .from);
double a2 = innerDistance (t .to);
double a3 = t .innerDistance (from);
double a4 = t .innerDistance (to);
return MIN(MIN (a1, a2), MIN (a3, ad);
}

/* calculates counter-clockwise angle from the second
vector to the first vector
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*/

extern "C" double leftAngle (intPoint& a, intPoint& b)

{

double phil = atan2 ( a .y, a .X),
phi2 = atan2 (b .y, b .x), pi2 = 2 x M_PI;
if (phil < 0)
phil += pi2;
if (phi2 < 0)
phi2 += pi2;
if (phil < phi2)
return pi2 + (phil — phi2);
else
return phil — phi2

extern "C" int isClockwise (int NPoints intPoint x p)

{

double area = 0.0;
int i;
for (i = 0; i < NPoints — 1; i++)
area += (p [i] x * p [i + 1] .y) —
(p [+ 1 x*pl[].y;
area += (p [NPoints — 1] x = p [0] .y) — (p [0] .x = p [NPoints — 1] .y);
area /= 2.0;
if (area > 0)
return O;
else
return 1;

extern "C" double area (int NPoints intPoint x p)

{

double area = 0.0;
int i;
for (i = 0; i < NPoints — 1; i++)
area += (p [i] x * p [i + 1] .y) —
(P [+ 1 x*pl[l.y;
area += (p [NPoints — 1] x = p [0] .y) — (p [0] .x * p [NPoints — 1] .y);
return fabs (area / 2.0);
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extern "C" double perimeter (int NPoints intPoint * p)
{
double perimeter = 0.0;
int i;
for (i = 0; i < NPoints-1; i++){
double dx = p [i] x — p [(i + 1)] .x
double dy = p [i] .y — p [(i + 1)] .y
perimeter += sqrt (dxxdx + dyxdy);

}
double dx = p [NPoints-1] .x — p [0] .x; 160

double dy = p [NPoints-1] .y — p [0] .y;
perimeter += sqrt (dx«dx + dyxdy);
return perimeter

// Calculate line (ax + by + ¢ = 0) going through two distinct points
Line:Line (Point& pl, Point& p2)

{
a=ply— p2uly,
b=p2.x—-pl.x 170
cC=pl x*p2y — p2 .x=x*xpl.ly,

}

// Check if two lines are parralel
int Line:parallel (Line& 12)

{
double s = (a % 12 .b — b x 12 .a);
if (s==0)
return 1;
else 180
return O;
}

// Calculate Intersection of two lines
Point Line:intersect (Line& 12)
{
double den=a % 12 .b — 12 .a * b;
return Point ( (b x 12 .c — 12 .b x c)/den
(c x 12 .a — 12 .c x a)/den;
} 190
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// Check if collinear point O is between a and b
int Point:between(Point& a, Point& b)

{
if ((xthis — a) .norm () + (xthis — b) .norm () < (a—b) .norm ()
return 1;
else
return O;
} 200

// Calculate measure of a segment of length | intersecting segments
// aand b simultaneously in a simple case (whegap b is not
// inside open a or inside open b.
static double KMeasureSimple(double |, Point& O, Segmer& a, Segmer& b)
{
Point al = a .from, bl = a .to, a2 = b .from, b2 = b .to;
typedef enum {IN=—1, OUT=1} direction
direction dirA = OUT, dirB = OUT;
if (bl .between(O, al) || 210
(fabs (b1 x — O .X) < DBL_EPSILON &&
fabs (b1 .y — O .y) < DBL_EPSILON){

dirA = IN;
bl = a .from;
al = a .to;

}
if (b2 .between(O, a2)||

(fabs (b2 x — O .X) < DBL_EPSILON &&
fabs (b2 .y — O .y) < DBL_EPSILON){

dirB = IN; 220
b2 = b .from;
a2 = b .to;

}
double 111 = sqrt ((O—al) .norm ());

double 121 = sqrt ((O—a2) .norm ());

double 112 = sqrt ((O—bl) .norm ());

double 122 = sqrt ((O—b2) .norm ());

double 132 = ((b1—b2) .norm ());

double 113 = sqrt ((O—al) .norm ());

double 123 = sqrt ((O—b2) .norm ()); 230
double 114 = sqrt ((O—bl) .norm ());

double 124 = sqrt ((O—a2) .norm ());
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double cosA = ( (112/122 + 122/112 — 132/112/122)/2 );
double alpha = acos (cosA;

return dirA«dirB * (—1 x OutMeasure(l, 111, 121, alphgd —
OutMeasure(l, 112, 122, alpha +
OutMeasure(l, 113, 123, alpha +
OutMeasure(l, 114, 124, alpha);

/* Calculate Kinematic measure of the movements of a segment of length |
intersecting two other segments
«/
double KMeasureSegmentdouble I, Segmer& a, Segmer& b)
{
if (& .to == a .from) || (b .to == b .from))
return O;
Line la = Line (a .from, a .to), Ib = Line (b .from, b .to);
if (la .parallel (Ib)){
double num=1b .a « a .from .x + Ib .b x a .from .y + Ib .c
double den = (Ib .axlb .a + Ib .b«lb .b);
double d = fabs (num) / sqrt (den;
double 11 = sqgrt ((a .to — a .from) .norm ());
double 12 = sgrt ((b .to — b .from) .norm ());
Point close (a .from .x — Ib .a * num / den
a from.y — Ib .b x num / den);
Point dir = a .to — a .from;
double sign s;
if ((b.to — closgxdir < (b .from — clos@xdir ){
sign = 1;
s = sgrt (b .to — clos@ .norm ());
if (b .to — clos@xdir < 0)
= —§
telsg{
sigh = —1;
s = sqgrt ((b .from — clos@ .norm ());
if (b .from — closgxdir < 0)
S = —s
}

return sign x parallelM (I, 11, 12, d, 9);
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telsg
Point O = la .intersect (Ib);
if (O .between(a .from, a .to)){
Segment x1(a .from, O), x2 (O, a .to);
return KMeasureSimple(l, O, b, x1) +
KMeasureSimple(l, O, b, x2);
telsg{
if (O .between(b .from, b .to)){
Segment x1(b .from, O), x2 (O, b .to);
return KMeasureSimple(l, O, a, x1) +
KMeasureSimple(l, O, a, x2);

telse
return KMeasureSimple(l, O, a, b);
}
}
}
return O;

/* Calculate Kinematic measure of the movements of an oriented segment of
* length | so that it starts and ends within nonintersecting
* polygons a and b accordingly.
* All Polygons must have boundary vertices in same orientation!!!
*/
extern "C" double KMeasure (double I, int an, int bn,
intPoint * a, intPoint * b)

if (I ==0)

return O;
double sum = 0;
if (@ == b && an == bn){// The same polygon see Theorem

for (int i = 0; 1 < an — 1; i++)

for (int j = i+l; j < an; j++)
if (1= i)
double tmp = KMeasureSegmengl,
Segment(a [i], a [(i+1)%an]),

Segment(b [j], b [(j+1)%bn]));

sum += tmg
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}
sum += 2 x (M_Pl x area (an, a) — | x perimeter (an, a));
telsg
for (int i = 0; i < an; i++)
for (int j = 0; ] < b j++){
double tmp = KMeasureSegmen(, 320
Segment(a [i], a [(i+1)%an]),
Segment(b [j], b [(j+1)%bn]));
sum += tmp,
}
sum /= 2;
}
if (sum < 0)
return O;
else
return sum 330
}
C.6 Acc

#include <streamh>
#include <stdioh>
#include <stdlib.h>
#include <mathh>

#include "geom.h"
#include "A.h"

Point Range(Border& a, Border& b)
{ 10
double oD = 0, iD;
for (int i = 0; i < a .nPointg i++)
for (int j = 0; j < b .nPoints j++){
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double tmp = distance2 (a .line [i], b .line [j]);
oD = dmax (oD, tmp);
}
oD = sqrt (oD);

if (&a == &b) // the same curve
iD = 0;

else
iD

20

innerDistance (a .nPoints b .nPoints a .line, b .line);

Point ans (iD, oD);
return ans

Covariance:Covariance (double alp=—1, double sig = 1)
{
if (alp > 0 || sig <= 0){
fprintf  (stderr,

30

"need nonpositive first parameter and positive second\n" );
exit (—1);
telsg{
type = 0;
sigma = sig;
alpha = alp;

40
double Covariance:operator ()(double x)

{
switch (type{
case 0:
double tmp = sigma x exp (alpha x (fabs (x)));
if (tmp < 0)
return O;
else
return tmp
break;
case 1:
int which = (int) (fabgx) / range x nBing;
if (which >= nBing
return values [nBins — 1];

50
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else
return values [which;
break;
default:
fprintf  (stderr,
"covariance type is not set up properly \n" );
exit (—1);
return O;

void A:writeW (char x nameg

{

//
//
//
//
//
//
//
//
//
//

FILE * out = fopen (name "w");
if (out == NULL){
fprintf (stderr, "Can not open file %s fr writing\n" , hame;
exit (—1);
}
fprintf  (out, "%d\n%d\n" , nRegions nCellg;
fwrite (&diam, sizeofdiam), 1, oui);
for (int i = 0; i < nRegions i++)
for (int j = i; j < nRegions j++){
fwrite (xes [i*nRegions+ j], sizeofxxxeg, nCells oul);
fwrite (wus [ixnRegions+ j], sizeofxxwug, nCells ou);
fwrite (Values [ixnRegions+ j], sizeo{xxValue3, nCells out);
fprintf  (stderr, "%d %d %lf::: ", i, j, SCALING;
intk;
for (k = 0; k < nCells; k++)
fprintf (stderr, “%.13le ", xes finRegions + j][K]);
fprintf (stderr, \n");
for (k = 0; k < nCells; k++)
fprintf (stderr, “%.13le ", wus [knRegions + j][K]);
fprintf (stderr, \n");
for (k = 0; k < nCells; k++)
fprintf (stderr, “%.13le ”, Values [inRegions + j][K]);
fprintf (stderr, \n");
}

fclose (out);
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void A:readW (char x namé

{

double A::convol

{

FILE x out = fopen (name "r" );

if (out == NULL){

fprintf  (stderr, "Can not open file %s for reading\n"

exit (—1);

}

fscanf (out, "%d\n%d" , &nRegions &nCellg;

if (fgetc (out) !'= \n'

A

cerr << "Some problem reading the W file\n"

exit (—1);
}
fread (&diam, sizeofdiam), 1, out);
for (int i = 0; i < nRegions i++)
for (int j = i; j < nRegions j++){

fread (xes [ixnRegions+ j], sizeofxxxeg, nCells ou);
fread (wus [i*nRegions+ j], sizeofxxwug, nCells out);

, hame);

fread (Values [ixnRegions+ j], sizeo{x+Valueg, nCells out);
Values [jxnRegions+ i] = Values [ixnRegions+ j];

}

fclose (out);

(double x)

double tmpl = (xgamma (X),
tmp2 = pureMeasure(x);

return tmplxtmp2

double A::pureMeasure(double x)

{

return X x KMeasure (x, border [i] .nPoints

border [j] .nPoints
border [i] .line,
border [j] .line);

A:A (char * fileName int pure int preCalculate

{

int i, j, size
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FILE * in = fopen (fileName "r" );
if (in == NULL){

fprintf (stderr, "can not open file %s\n" , fileNamé;
exit (—1); 140
}
fscanf (in, "%d", &nRegion}
if ((border = (Border x) malloc (nRegionsx sizeof (Borden)) == NULL){
fprintf  (stderr, "Can not allocate memory\n" );
exit (—1);
}
for (i = 0; i < nRegions i++){
if (1 != fscanf (in, "%d", &sizg){
fprintf (stderr, "can not read file %s\n" , fileNamé; 150
exit (—1);
}
border [i] . nPoints = size
if ((border [i] .line = (intPoint x) malloc (size = sizeof (intPoint))) == NULL){
fprintf  (stderr, "can not allocate memory\n" );
exit (—1);
}
for (j = 0; ] < size j++)
if (2 != fscanf (in, "%d %d", &(border [i] .line [j] .x),
&(border [i] .line [j] .y)){ 160
fprintf  (stderr, "can not read file %s\n" , fileName;
exit (—1);

}
if (preCalculatg{
border [i] .minX = border [i] .maxX = border [i] .line [0] .x;
border [i] .minY = border [i] .maxY = border [i] .line [0] .y;
for ( = 1; ] < size j++){
if (border [i] .minX > border [i] .line [j] .X)
border [i] .minX = border [i] .line [j] .x
if (border [i] .maxX < border [i] .line [j] .X) 170
border [i] .maxX = border [i] .line [j] .x;
if (border [i] .minY > border [i] .line [j] .y)
border [i] .minY = border [i] .line [j] .y;
if (border [i] .maxY < border [i] .line [j] .y)
border [i] .maxY = border [i] .line [j] .y;
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}
fclose (in);
if (preCalculatg{ 180
minX = border [0] .minX;
maxX = border [0] .maxX
minY = border [0] .minY;
maxY = border [0] .maxY,
for (i = 1; i < nRegions i++){
if (border [i] .minX < minX)
minX = border [i] .minX;
if (border [i] .maxX > maxX
maxX = border [i] .maxX
if (border [i] .minY < minY) 190
minY = border [i] .minY;
if (border [i] .maxY > maxy)
maxY = border [i] .maxY,
}
diam = sgrt ((maxX — minX)x(maxX — minx) +
(maxY — minY)x(maxY — minY));
}

areas = new double [nRegiong
for (i = 0; i < nRegions i++)
areas [i] = :area (border [i] .nPoints border [i] .line); 200
SCALING = 0;
for (i = 0; i < nRegions i++)
SCALING += areas [i];
SCALING *= sqrt{SCALING;

nCells = 81;
Values = new double x [nRegionsx nRegionk
xes = new double x [nRegionsx nRegionk
wus = new double * [nRegions* nRegiong
for (i = 0; i < nRegions i++) 210
for (j = i; j < nRegions j++){
Values [ixnRegions+ j] = new double [nCellg;
Values [jxnRegions+ i] = Values [ixnRegions+ j];
xes [ixnRegions+ j] = new double [nCellg;
xes [jxnRegions+ i] = xes [ixnRegions+ j];
wus [ixnRegions+ j] = new double [nCellg;
wus [j*nRegions+ i] = wus [ixnRegions+ |];
if (preCalculatg{
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Point range = Range (border [i], border [j]);

qguadrature (range .x, range .y, xes [ixnRegions+ j],
wus [ixnRegions+ j], nCell3;
{// uniform spacing
for (int k = 0; k < nCells; k++)
wus [ixnRegions + j] [k] = (range .y-range J)Cells;
xes [iknRegions + j] [K] =
range .x + (k+.5)(range .y-range .¥nCells;

—>i = i; this —>j = |;
for (int k = 0; k < nCells k++){
Values [ixnRegions+ j] [K] =
pureMeasure(xes [ixnRegions+ j][K])/SCALING

cout<<i <<

<<

w wn

<<j<<"" << xes [knRegions + j][k]
“" << wus [i«nRegions + j][K]
<< “" << Values [i* nRegions + j][K]

<< wn << "+-\I’]";

measure= &A:pureMeasurg

gamma= new Covariance (—1, 1);

measure= &A::convol

/*
}
}
*/
this
//
//
//
//
}
}
}
if (pure
elsg
}
extern "C"

{

void gaussq(int x kind, int = n, double % alpha double x betg

int % kpts double x endpts double * scratch

double x x, double *x w);
void quadrature (double x1, double x2, double xx, double xw, int n)

zero = 0.0;

// Legendre quadrature (kind = 1)
// w(x)=1on(-1,1)
double x scratch = NULL, * X = NULL, * W = NULL, endpts[2] = { —
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int kind = 1, kpts = 2;
static int N = O;
if (IN){
X = (double %) malloc (n * sizeof (double));
W = (double x) malloc (h * sizeof (double));
scratch = (double %) malloc (n * sizeof (double));
if (X == NULL || W == NULL || scratch == NULL){
fprintf  (stderr, "Can not allocate 3*%d doubles\n"

exit (—1);
}
N = n;
gaussq (&kind, &N, &zerg &zerq &kpts endpts scratch
X, W);
}
if (N = n){
X = (double x) realloc (X, n * sizeof (double));
W = (double %) realloc (W, n x sizeof (double));
scratch = (double x) realloc (scratch n x sizeof (double));
if (X == NULL || W == NULL || scratch == NULL){
fprintf  (stderr, "Can not reallocate 3*%d doubles\n"
exit (—1);
}
N = n;
gaussq (&kind, &N, &zerg &zerq &kpts endpts scratch
X, W);
}
for (int i = 0; i < n; i++){
x [i] = x2 = x1) = (X [i] + 1)/2 + x1,
wfi] = W] *x x2 — x1)/2;
}

double A::qgaus (double a, double b, int n)
{
double xx [n], w [n];
double sum = 0;
quadrature (a, b, xx w, n);
for (int i = 0; ii < n; ii++){
sum += w [ii] * ((this —xmeasurg (xx [ii]));
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return sum
}
double A::qgfast (void)
{
double tmp = O;
for (int k = 0; k < nCells k++){
tmp += Values[i * nRegions+ j][K]
x this —>gamma —>operator () (xes [i * nRegions+ j][K])
* wus [i * nRegions+ j][K]; 310
}
return tmp
}

320




