Impact of Triage: a Study of Mozilla and Gnome

Jialiang Xie¢', Minghui Zhou and Audris Mockus
*School of Electronics Engineering and Computer ScienckinBdJniversity
Key Laboratory of High Confidence Software Technologieshibtry of Education
Beijing 100871, China
{xiejl11@sei.,zhmh@pku.edu.cn
 Avaya Labs Research
233 Mt Airy Rd, Basking Ridge, NJ
audris@avaya.com

Abstract—Triage is of great interest in software projects e.g., atriager left Mozilla “because of a general lack ofiast

because it has the potential to reduce developer effort by in doing anything substantial to improve the triage prog&ss
involving a broader base of non-developer contributors to filter . .

and augment reported issues. Using issue tracking data and For brevity, we use the word “triager” to refer to a non-
interviews with experienced contributors we investigate ways to developer triager in the remainder of this work.

quantify the impact of triagers on reducing the number of issues . . s
developers need to resolve in two OSS projects: Mozilla and We aim, therefore, to help such communities by under

Gnome. We find the primary impact of triagers to involve issue Standing the value triagers may bring and how to leverage the
filtering, filling missing information, and determining the relevant ~ Strength to improve the project. In particular, we investey

product. While triagers were good at filtering invalid issues and . L .
as accurate as developers in filling in missing issue attributes, they e What are triage activities in Mozilla and Gnome? Do

had more difficulty accurately pinpointing the relevant product. they differ?

We expect that this vvprk will hlghllght the importance of issue e With what activities do triagers help the most?

triage in software projects and will help design further studies

on understanding and improving triage practices. We introduce the methodology in Section II, and present

the results in Section Ill. We discuss the validation and

limitations in Section 1V, describe the related work in Sec-

tion V, and conclude the paper in Section VI. We pro-
Developing source code is not enough for a successffide the data and scripts we used fatp://www.passion-

software project. Necessary levels of quality and complege lab.org/projects/triage.html

of functionality could be realized only through feedbaobnfr

a large population of contributors, especially users. Sapht II. METHODOLOGY

is typically managed via issue tracking systems (ITS). A

small core team [1] of popular OSS projects can be eaSII)f\/lozillain the corresponding ITS, i.e., Bugzilla systemghiis

pverwh_elmed by the massivg inflow of issues 6_0K/year case. We follow procedures to analyze such data described
in Mozilla and Gnome) leading to delays, unsatisfied users, .

and lower quality of the product. In particular, a considiéea i [4], in particular, we iterate over the following steps to
q y he p -np ! jncrease the quality of data: first we retrieve the raw data,
number of reported issues are of low quality and can not

be fixed. For example, issues lacking sufficient im‘ormationthen perform initial cleaning and processing, create measu

;] answer our research questions, perform analysis of these
represent 15% and 6% of all resolved issues in Gnome an . ; ’ ;
Mozilla [2]. It is, thus, paramount to recruit, train, andai r‘ﬁeasures, and finally validate the results. The validattep s

: . . involving experts from both projects led to revisiting and
a _broader bgse of CO”t”bUFOfS (triagers) to filter and augme modifying assumptions made in the earlier steps and rebulte
this predominantly low-quality input, so that the develspean

S L)) in several iteration.
spend their time on fixing real issues. Triage as a procedure

to filter and improve the quality (relevance, accuracy, @epr .
ducibility, non-duplication, and completeness) of usgoréed A. Bug Triage Protocol

issues is, thus, a critical part of any large project. We found many documents describing bug resolution pro-
. o . . cess. Gnome provides its triage protocols [5], and Mozida h
Many contributors help_W|th issue reporting and resolution a triage guide [6]. In a nutshell, an issue (often referredgo
For example, Gnome project Evolution had more K)\ ho heeds a triage starts from UNCONFIRMED status.
contributors help|_ng to report and resolve issues, but dhly A contributor, for example, a triager or developer, pickstsu
developers contributing code over the past decade. Howeveropen,, issue and then either 1) indicates that the issuelig va

the value of contributions made by these non-developegeria and needs developer’s attention by setting the status to,NEW

may be underes_tlmateq. A deve]oper who does a triage on i} 2) closes the issue by setting the status to RESOLVED with
issue, can also fix the issue, unlike the non-developereriag "¢ the resolutions shown in Table |

Consequently, non-developer triagers may feel unappestia

I. INTRODUCTION

We study more than a decade of data for Gnome and

To understand the triage protocol better, we had several
*Corresponding author email exchanges with four contributors (a bug-master from

TABLE I: Misconfirmed Reports with Their Final Resolution

Project Duplicate | WorksForMe Invalid WontFix Incomplete | Exprd/Obslt | NotABug | #lssues
Mozilla | 9452/39.7% | 7981/33.5% | 2355/9.9% | 2328/9.8% | 1045/4.4% 637/2.7% N/A 23800
Gnome | 2924/33.0% N/A | 1389/15.7% | 820/9.3% | 1941/21.9% 651/7.4% | 535/6.0% 8861

Gnome and an experienced developer from Mozilla and twaalue. Because there is no “gold standard” for the correct
ordinary triagers, whom we refer to as gnome-1 and 2yalue of an attribute in an issue tracking system, we focus
and mozilla-1 and 2), clarifying our interpretation of g&@ on counting likely mistakes. We can not determine mistakes
activities and the issue tracking data. As our understandin in triage activities with no subsequent action on the sasigeis
triage activities and impact increased, we followed up veith without another person inspecting the issue it is not ptessib

more focused analysis and more specific questions. to tell if a mistake was made. The remaining triage actigitie
we consider to be a “mistake” if they set an issue attributa to
B. Preparing Data value that is different from the final value of that attribulie

! .) .. particular, we count mistakes only for issues that werelveso
We first retrieved Bugzilla data from Gnome and Mozilla in g satisfy at least one of the conditions: the issue was;fixed

March of 2011. For both communities, we removed the issueg,e jssue was confirmed: or there were subsequent activities
prior to and including 2000 because of the data quality of thg) the same issue.

time-stamps for issues reported during that early period.

As noted in II-A, we define as triage activities con- lll. RESULTS
fined to issue workflow between status UNCONFIRMED and e outline our findings on triage activities in Mozilla and

RESOLVED/NEW. We consider two types of activities as gnome and discuss the differences between the two projects

triage: modifications to issue attributes and, issue coafion ; Section IlI-A. and quantify the impact of triage actigid in
(change of status to NEW or RESOLVED). Data associatedaction |11-B. ’ a bt P g

with each triage activity includes issue ID, the date of\digti

Ehe Iog:n of the_acto_r, th(_e name of the modified attribute O'A \What are triage activities in Mozilla and Gnome
status” for confirmation, its old value, and the new value.
Generally, the nature of bug triage is to harness the

Note that some issues may not have any triage activitie§yoming bug reports. There are three kinds of triage tasks.

because they’re submitted by the contributors with theilpge
to set the initial status to NEW (e.g., developers). First, check the relevance of the report. As Mozilla-1

.described, “triage is basically the process of filteringoiming
The dataset we analyzed contains 1,153k triage activities ibug reports”, it aims to answer, “is this bug report actually

397k issues of Gnome and in 1,492k triage activities in 249k bug, or is it something else, spam, a third-party program
issues of Mozilla. support request, etc.?” This task, therefore, is to confirm
relevant reports and to reject irrelevant reports. We amrsi

C. Identifying the Roles resolving non-reproducible, or not-relevant issues as afme
Triagers are not the only contributors who conduct triagein® Penefits triagers provide and refer to itfétering.
activities, as other contributors, e.g., developers atsadact Second, complete the report information, in particular,

triage. To quantify the impact of triagers and to comparecomplete the attributes like Severity, Priority, Produ®s,

the accuracy of their activities to the accuracy of deveispe and Version. That is, as Gnome-1 emphasized: “Triagers make
we need to determine who is a triager and who is notsyre that reports include enough information to be useful fo
Based on the analysis of contribution profiles in Bugzillalan developers.” They greatly help developers because, asllstozi
Version Control System (VCS) we were able to identify two 1 pointed out: “Getting complete information takes the most
additional roles involved in triage activities: developeand time as it often requires a back-and-forth of communication
Issue reporters. between the triager and the reporter.”

In particular, we identifyDevelopersn Bugzilla by match- Third, determine the location of the report: “Is this bug in
ing them to code committers in each project. We operatiz@ali the right product so it will be seen by the right developers?”
Triagersas contributors who conduct at least one triage activityas proposed by Mozilla-1. Gnome-1 also explained this task:
on issues that were reported by another person. A contributoOne of the triagers’ task is to assign reports to products, n
may change their role over time, we, therefore, consider @pecified logins.” The contributors who do the triage “nolfyna
person to be a triager only during the period before theit firsnever change the assignee manually”, he commented, “When
code commit. The contributors who modify only issues thatwe set up a new product in GNOME Bugzilla we create

they have previously reported we assignedReporterrole. a ‘virtual' default assignee in the form of ‘productname-
maint@gnome.bugs’. We ask developers of the product to add
D. Accuracy of Triage this account to their ‘User Watchlist'. If a developer plans

In addition to the number of activities triagers perform work on a bug report, she can assign the bug report to hérself.

and the number of issues they participate in, we also would In summary, triager’s three tasks are to filter (confirm or
like to know if they are accurately performing these tasksreject), fill information (complete attributes such as Sitye
We measure the accuracy of a triage activity by determinindPriority, OS and Version), and assign products for reported
if the attribute value it sets for an issue is the “correct”issues.

TABLE 1I: The Number and Proportion of Issues with a Modifiettrioute

Project Severity Priority Version oS Product | Total Triaged Issues
Gnome | 18K/4.4% | 13K/3.3% 25K/6.2% TKI1.7% | 13K/3.2% 397K
Mozilla 18K/7.4% 4K/1.5% | 40K/16.2% | 19K/7.5% | 22K/8.9% 249K
_ of triage tasks conducted by triagers and developers in both
= Gnome Triager = Gnome Developer communities. Note Severity, Priority, Product, OS, andsiter
oo =Mozilla Triager mMozilla Developer represent the task of completing the corresponding atéribu
150000 Figures show that the biggest impact of triagers was on
100000 filtering reports. In particular, the number of issues fdtkr
50000 by triagers wasl90K (77% of all filtered issues) in Mozilla,
0 and 106 K (27% of all filtered issues) in Gnome. Meanwhile,
Reject Confirm Severity Priority Version OS Product triagers rejected issues accurately: in both projee¥% of the

rejections were correct, higher than for any other type si.ta

Fig. 1: Number of Issues by Triage Task and Role Triagers had the second largest impact on completing infor-

mation for newly reported issues, in particular, they ccetead
attributes for OS, Version, and Severity for a large numider o
issues and accurately. Gnome-1 commented on this finding:
“this information is meta data and can be easily asked for and
corrected in one step.” It suggests that completing thecbasi
information may be a good starting point for beginner triage

H Gnome Triager
m Mozilla Triager

2 Gnome Developer
m Mozilla Developer

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%

Figure 2 shows that the triager product assignments are
often incorrect. It seems to be particularly difficult in Mitez
“It can be an issue in the underlying stack instead of the
application, and finding the exact low-level library is hdod
an average triager.”

OS Product

Reject ConfirmSeverity Priority Version

Fig. 2: Accuracy of Issues by Triage Task and Role

Table 1l shows the humber and proportion of modifications
to various attributes of triaged issues in both communities
particular, we see that triagers modify Product, OS, Versio
and Severity in a larger fraction of triaged issues for Mazil
and Priority in a larger fraction of triaged issues for Gnome

Table | shows that a large fraction of triager-confirmed
issues are not fixed with 59% and 30% of issues confirmed
by triagers were not fixed (incorrectly confirmed) in Mozilla
and Gnome respectively.

The largest fraction of such issues comes from duplicate
geports. The projects use some duplicate-detection tgabni
§§g., Mozilla Crash Reports [7] and Gnome Duplicate-finder,

S however, these techniques “are not perfect” [8], espsciall
larger base of users, thus an average user is likely to hase Iefor those without stacktraces such as Ul, enhancements or

computer expertise than an average Gnome user, e.g., “Mamy, \qjation problems. Therefore, triager has to searafutfir
bugs get marked Firefox when they are really bugs in the corgy;qiing reports, including the issues that are alreadydfixe
engine.” Such broad base of users also lowers the quality Qientified as dublicates

reports and requires triagers to add sufficient informatimn
make them useful for developers.

From the reviews and on-line documents and by inspectin
a sample of relevant issues, we found two reasons for the
differences. First, the user base is different. Mozillaasuch

Therefore, we expect that triagers may be most effective
, in reducing developers’ load by filtering irrelevant regodnd
The second reason we found stems from the differencegy fijling in missing information. But confirming issues and

in community policy. For example, Mozilla Triage Guideline ysgigning them to the correct products are not easy tasks for
notes: “don’'t change Priority field, which is for the devel- triagers.

oper” [6]. This may partly explain why Priority field is chagd)
less in Mozilla. IV. VALIDATION AND LIMITATIONS
As mentioned earlier, we follow procedures described
in [4] to ensure that we accurately interpret Bugzilla daid a
We evaluate triager’s contribution by the number of modi-measures derived from it.
fied issues and the accuracy of the information they prowide t
developers. Given that a triager may change several a#sbu
of an issue, or change the same attribute of an issue seve
times, we calculate triager's contribution by the number of
modified issues. To measure accuracy, we consider thedracti
of activities without “mistakes”. We also compare triagers
contribution to that of developers’.

B. Impact of Triagers in Mozilla and Ghome

In particular, we had to iterate to arrive at the method we

ed to separate triagers from the other roles based on their
activity profiles. While it is relatively easy to identify delv
opers via their commits in the VCS, contributors may change
their role over time, with many triagers eventually conitibg
code (thus becoming a developer). We, therefore, assigned
a sequence “(role, time)” of tuples to each individual based

Figure 1 illustrates the number of issues for different gype on the time when the role was first assumed in the dataset.
of triage tasks and Figure 2 shows the quality of differepety And we only considered a contributor as a triager before

she became a developer. Meanwhile, Reporters may conduct We plan to use these results to investigate the reasons
“triage” activities because anyone is permitted to modifg t for the difficulties triagers face in product assignementd an

issues they report. We, therefore, considered contrisutobe
triagers only if they triaged issues reported by others.

A particularly vexing problem we faced was the measure
of accuracy for a triage activity. After many iterations and
experimentation with alternative measures we arrived at th
presented heuristic even though it has a number of drawbackﬁ
For example, typically the severity of a NOTABUG issue is
not considered to be important, thus its final value may not b
verified. We, therefore, did not evaluate accuracy of dtisi
with no subsequent activities for the same issue, becagse th
attributes modified by these activities may not have had a

in confirming issues and we plan to develop tools to support
such tasks. In particular, we plan to produce a tool that doul
help triage practice by predicting the accuracy of all btties

in an issue report and would suggest ways to correct it. We
hope that our work would be worthy of the following quote
from triager’'s guide: “By following these techniques youllwi
elp the important bugs get fixed, as well as optimize preciou
éjeveloper time.”

VII. ACKNOWLEDGMENT

chance to be looked at (and, thus, may not have been verified). Partial support by the National Natural Science Foundation
of China Grants 91118004, 61121063 and 61073016.

We observed that some products changed their name.
We, therefore, do take it into account in calculating prdaduc
assignment accuracy. For example, if the final product vislue
B, but the triager assigned the issue to product A. We do not[
consider it to be a mistake if the product A was renamed to B.
To discover all instances of product renaming we searched fo
inconsistencies in product names data and validated these a
instances of renaming by confirming via documents des@ibin [2]
the history of that product.

1]

V. RELATED WORK -

There has been a substantial amount of work on trying to
understand and help improve the issue/bug tracking pesctic [4]

“Who can fix this bug?” is an important question in bug triage
needed to “accurately” assign developers to bug reports. Fo
example, machine learning techniques [9], [10], and graph
model based on Markov chains [11], were used to better assigr[15]
developers to bug reports. (6]

Detecting duplicate (or similar) reports is another common [7]
topic, with studies attempting various ways to compare theg
similarity of issue reports. For example, Natural Language
Processing (NLP) techniques [12], and NLP techniques plus9]
execution information [13] were used to suggest the most
similar bug reports to the new bug report.

Bug fixing is an important topic with a substantial amount[10]
of literature. Common questions include: which bugs get
fixed [14]? how long it takes to fix a bug [15]?

Unlike prior work, this study focuses on understanding and11]
guantifying triagers’ practice, in particular, what tagkiiager
is involved with and what value triagers may bring to the
project.
VI.

CONCLUSION [12]

We study the nature of triage and the impact of non-
developer triagers by analyzing the issue tracking prastic
in Ghome and Mozilla.

" . — . [13
We found that the critical triage goals are to filter mcommg[]

reports, fill incomplete information, and assign reportpriad-
ucts. We also found some variations in triage practice betwe
the project that may be attributable to different policiesl a
user base. Our analysis shows that non-developer triaggks m
a substantial contributions by filtering non-fixable issaesl
by filling basic information, while confirming issues and as-
signing products appear to be a difficult challenge for &iag

[14]

REFERENCES

A. Mockus, R. T. Fielding, and J. Herbsleb, “Two case stacf open
source software development: Apache and MozilkCM Transactions
on Software Engineering and Methodologwl. 11, no. 3, pp. 1-38,
July 2002. [Online]. Available: http://dl.acm.org/autfe®?39725

M. Zhou and A. Mockus, “What make long term contributors:
Willingness and opportunity in oss community,” ifCSE 2012
Zirich, Switzerland, 2012, pp. 518-528. [Online]. Avaikbpapers/
willingness.pdf

T. Downer, “Some clarification and musings,” http://tdewner.
wordpress.com/2011/08/27/some-clarification-and-musip@$1.

A. Mockus, “Software support tools and experimental workn
Empirical Software Engineering Issues: Critical Assesst:ieand
Future Directions V. Basili and et al, Eds. Springer, 2007, vol.
LNCS 4336, pp. 91-99. [Online]. Available: papers/SSTagii.

“The gnome bugsquad,” https://live.gnome.org/Bugsquzai 2.

“Mozilla triage guide — harnessing the flood of communitiftps://
wiki.mozilla.org/QA/Triage, 2010.

“Mozilla crash reports,” https://crash-stats.mozitiam.

“Finding duplicates,” https://live.gnome.org/BugsaliTriageGuide/
FindingDuplicates, 2010.

J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proceedings of the 28th international conference on Saéwa
engineeringser. ICSE '06. New York, NY, USA: ACM, 2006, pp. 361—
370. [Online]. Available: http://doi.acm.org/10.114584P285.1134336

J. Anvik and G. C. Murphy, “Reducing the effort of bug oeptriage:
Recommenders for development-oriented decisiolsCM Trans.
Softw. Eng. Methodgl.vol. 20, no. 3, pp. 10:1-10:35, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/200Q72000794

G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triagehwit
bug tossing graphs,” ifProceedings of the the 7th joint meeting of
the European software engineering conference and the AGQSSFT
symposium on The foundations of software engineesaeg ESEC/FSE
'09. New York, NY, USA: ACM, 2009, pp. 111-120. [Online].
Available: http://doi.acm.org/10.1145/1595696.1595715

P. Runeson, M. Alexandersson, and O. Nyholm, “Deteatibduplicate
defect reports using natural language processing,Pioceedings of
the 29th international conference on Software Engineersey. ICSE
'07. Washington, DC, USA: IEEE Computer Society, 2007, pp.
499-510. [Online]. Available: http://dx.doi.org/10.1U0CSE.2007.32

X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An apptba

to detecting duplicate bug reports using natural languaged a
execution information,” inProceedings of the 30th international
conference on Software engineeringer. ICSE '08. New York,

NY, USA: ACM, 2008, pp. 461-470. [Online]. Available: http:
//doi.acm.org/10.1145/1368088.1368151

P. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Charizihg
and predicting which bugs get fixed: an empirical study of nsofo
windows,” in Software Engineering, 2010 ACM/IEEE 32nd Interna-
tional Conference onvol. 1, may 2010, pp. 495 -504.

[15] S. Kim, J. Whitehead, and E. James, “How long did it take tdiigs?” repositories ser. MSR '06. New York, NY, USA: ACM, 2006, pp. 173—
in Proceedings of the 2006 international workshop on Mininfjveare 174. [Online]. Available: http://doi.acm.org/10.11458rP83.1138027

