
Impact of Triage: a Study of Mozilla and Gnome

Jialiang Xie∗, Minghui Zhou∗ and Audris Mockus†
∗School of Electronics Engineering and Computer Science, Peking University

Key Laboratory of High Confidence Software Technologies, Ministry of Education
Beijing 100871, China

{xiejl11@sei.,zhmh@}pku.edu.cn
† Avaya Labs Research

233 Mt Airy Rd, Basking Ridge, NJ
audris@avaya.com

Abstract—Triage is of great interest in software projects
because it has the potential to reduce developer effort by
involving a broader base of non-developer contributors to filter
and augment reported issues. Using issue tracking data and
interviews with experienced contributors we investigate ways to
quantify the impact of triagers on reducing the number of issues
developers need to resolve in two OSS projects: Mozilla and
Gnome. We find the primary impact of triagers to involve issue
filtering, filling missing information, and determining the relevant
product. While triagers were good at filtering invalid issues and
as accurate as developers in filling in missing issue attributes, they
had more difficulty accurately pinpointing the relevant product.
We expect that this work will highlight the importance of issue
triage in software projects and will help design further studies
on understanding and improving triage practices.

I. I NTRODUCTION

Developing source code is not enough for a successful
software project. Necessary levels of quality and completeness
of functionality could be realized only through feedback from
a large population of contributors, especially users. Suchinput
is typically managed via issue tracking systems (ITS). A
small core team [1] of popular OSS projects can be easily
overwhelmed by the massive inflow of issues (> 50K/year
in Mozilla and Gnome) leading to delays, unsatisfied users,
and lower quality of the product. In particular, a considerable
number of reported issues are of low quality and can not
be fixed. For example, issues lacking sufficient information
represent 15% and 6% of all resolved issues in Gnome and
Mozilla [2]. It is, thus, paramount to recruit, train, and retain
a broader base of contributors (triagers) to filter and augment
this predominantly low-quality input, so that the developers can
spend their time on fixing real issues. Triage as a procedure
to filter and improve the quality (relevance, accuracy, repro-
ducibility, non-duplication, and completeness) of user reported
issues is, thus, a critical part of any large project.

Many contributors help with issue reporting and resolution.
For example, Gnome project Evolution had more than20K
contributors helping to report and resolve issues, but only1K
developers contributing code over the past decade. However,
the value of contributions made by these non-developer triagers
may be underestimated. A developer who does a triage on an
issue, can also fix the issue, unlike the non-developer triagers.
Consequently, non-developer triagers may feel unappreciated,

*Corresponding author

e.g., a triager left Mozilla “because of a general lack of interest
in doing anything substantial to improve the triage process”[3].

For brevity, we use the word “triager” to refer to a non-
developer triager in the remainder of this work.

We aim, therefore, to help such communities by under-
standing the value triagers may bring and how to leverage their
strength to improve the project. In particular, we investigate:

• What are triage activities in Mozilla and Gnome? Do
they differ?

• With what activities do triagers help the most?

We introduce the methodology in Section II, and present
the results in Section III. We discuss the validation and
limitations in Section IV, describe the related work in Sec-
tion V, and conclude the paper in Section VI. We pro-
vide the data and scripts we used athttp://www.passion-
lab.org/projects/triage.html.

II. M ETHODOLOGY

We study more than a decade of data for Gnome and
Mozilla in the corresponding ITS, i.e., Bugzilla systems inthis
case. We follow procedures to analyze such data described
in [4], in particular, we iterate over the following steps to
increase the quality of data: first we retrieve the raw data,
then perform initial cleaning and processing, create measures
to answer our research questions, perform analysis of these
measures, and finally validate the results. The validation step
involving experts from both projects led to revisiting and
modifying assumptions made in the earlier steps and resulted
in several iteration.

A. Bug Triage Protocol

We found many documents describing bug resolution pro-
cess. Gnome provides its triage protocols [5], and Mozilla has
a triage guide [6]. In a nutshell, an issue (often referred toas
bug) that needs a triage starts from UNCONFIRMED status.
A contributor, for example, a triager or developer, picks such
“open” issue and then either 1) indicates that the issue is valid
and needs developer’s attention by setting the status to NEW,
or 2) closes the issue by setting the status to RESOLVED with
one of the resolutions shown in Table I.

To understand the triage protocol better, we had several
email exchanges with four contributors (a bug-master from



TABLE I: Misconfirmed Reports with Their Final Resolution

Project Duplicate WorksForMe Invalid WontFix Incomplete Exprd/Obslt NotABug #Issues
Mozilla 9452/39.7% 7981/33.5% 2355/9.9% 2328/9.8% 1045/4.4% 637/2.7% N/A 23800
Gnome 2924/33.0% N/A 1389/15.7% 820/9.3% 1941/21.9% 651/7.4% 535/6.0% 8861

Gnome and an experienced developer from Mozilla and two
ordinary triagers, whom we refer to as gnome-1 and 2,
and mozilla-1 and 2), clarifying our interpretation of triage
activities and the issue tracking data. As our understanding of
triage activities and impact increased, we followed up witha
more focused analysis and more specific questions.

B. Preparing Data

We first retrieved Bugzilla data from Gnome and Mozilla in
March of 2011. For both communities, we removed the issues
prior to and including 2000 because of the data quality of the
time-stamps for issues reported during that early period.

As noted in II-A, we define as triage activities con-
fined to issue workflow between status UNCONFIRMED and
RESOLVED/NEW. We consider two types of activities as
triage: modifications to issue attributes and, issue confirmation
(change of status to NEW or RESOLVED). Data associated
with each triage activity includes issue ID, the date of activity,
the login of the actor, the name of the modified attribute or
“status” for confirmation, its old value, and the new value.

Note that some issues may not have any triage activities,
because they’re submitted by the contributors with the privilege
to set the initial status to NEW (e.g., developers).

The dataset we analyzed contains 1,153k triage activities in
397k issues of Gnome and in 1,492k triage activities in 249k
issues of Mozilla.

C. Identifying the Roles

Triagers are not the only contributors who conduct triage
activities, as other contributors, e.g., developers also conduct
triage. To quantify the impact of triagers and to compare
the accuracy of their activities to the accuracy of developers,
we need to determine who is a triager and who is not.
Based on the analysis of contribution profiles in Bugzilla and
Version Control System (VCS) we were able to identify two
additional roles involved in triage activities: developers and
issue reporters.

In particular, we identifyDevelopersin Bugzilla by match-
ing them to code committers in each project. We operationalize
Triagersas contributors who conduct at least one triage activity
on issues that were reported by another person. A contributor
may change their role over time, we, therefore, consider a
person to be a triager only during the period before their first
code commit. The contributors who modify only issues that
they have previously reported we assigned toReporterrole.

D. Accuracy of Triage

In addition to the number of activities triagers perform
and the number of issues they participate in, we also would
like to know if they are accurately performing these tasks.
We measure the accuracy of a triage activity by determining
if the attribute value it sets for an issue is the “correct”

value. Because there is no “gold standard” for the correct
value of an attribute in an issue tracking system, we focus
on counting likely mistakes. We can not determine mistakes
in triage activities with no subsequent action on the same issue:
without another person inspecting the issue it is not possible
to tell if a mistake was made. The remaining triage activities
we consider to be a “mistake” if they set an issue attribute toa
value that is different from the final value of that attribute. In
particular, we count mistakes only for issues that were resolved
and satisfy at least one of the conditions: the issue was fixed;
the issue was confirmed; or there were subsequent activities
on the same issue.

III. R ESULTS

We outline our findings on triage activities in Mozilla and
Gnome and discuss the differences between the two projects
in Section III-A, and quantify the impact of triage activities in
Section III-B.

A. What are triage activities in Mozilla and Gnome

Generally, the nature of bug triage is to harness the
incoming bug reports. There are three kinds of triage tasks.

First, check the relevance of the report. As Mozilla-1
described, “triage is basically the process of filtering incoming
bug reports”, it aims to answer, “is this bug report actually
a bug, or is it something else, spam, a third-party program,
support request, etc.?” This task, therefore, is to confirm
relevant reports and to reject irrelevant reports. We consider
resolving non-reproducible, or not-relevant issues as oneof
the benefits triagers provide and refer to it asfiltering.

Second, complete the report information, in particular,
complete the attributes like Severity, Priority, Product,OS,
and Version. That is, as Gnome-1 emphasized: “Triagers make
sure that reports include enough information to be useful for
developers.” They greatly help developers because, as Mozilla-
1 pointed out: “Getting complete information takes the most
time as it often requires a back-and-forth of communication
between the triager and the reporter.”

Third, determine the location of the report: “Is this bug in
the right product so it will be seen by the right developers?”–
as proposed by Mozilla-1. Gnome-1 also explained this task:
“One of the triagers’ task is to assign reports to products, not
specified logins.” The contributors who do the triage “normally
never change the assignee manually”, he commented, “When
we set up a new product in GNOME Bugzilla we create
a ‘virtual’ default assignee in the form of ‘productname-
maint@gnome.bugs’. We ask developers of the product to add
this account to their ‘User Watchlist’. If a developer plansto
work on a bug report, she can assign the bug report to herself.”

In summary, triager’s three tasks are to filter (confirm or
reject), fill information (complete attributes such as Severity,
Priority, OS and Version), and assign products for reported
issues.



TABLE II: The Number and Proportion of Issues with a Modified Attribute

Project Severity Priority Version OS Product Total Triaged Issues
Gnome 18K/4.4% 13K/3.3% 25K/6.2% 7K/1.7% 13K/3.2% 397K
Mozilla 18K/7.4% 4K/1.5% 40K/16.2% 19K/7.5% 22K/8.9% 249K

Fig. 1: Number of Issues by Triage Task and Role

Fig. 2: Accuracy of Issues by Triage Task and Role

Table II shows the number and proportion of modifications
to various attributes of triaged issues in both communities. In
particular, we see that triagers modify Product, OS, Version
and Severity in a larger fraction of triaged issues for Mozilla
and Priority in a larger fraction of triaged issues for Gnome.

From the reviews and on-line documents and by inspecting
a sample of relevant issues, we found two reasons for these
differences. First, the user base is different. Mozilla hasa much
larger base of users, thus an average user is likely to have less
computer expertise than an average Gnome user, e.g., “Many
bugs get marked Firefox when they are really bugs in the core
engine.” Such broad base of users also lowers the quality of
reports and requires triagers to add sufficient informationto
make them useful for developers.

The second reason we found stems from the differences
in community policy. For example, Mozilla Triage Guideline
notes: “don’t change Priority field, which is for the devel-
oper” [6]. This may partly explain why Priority field is changed
less in Mozilla.

B. Impact of Triagers in Mozilla and Gnome

We evaluate triager’s contribution by the number of modi-
fied issues and the accuracy of the information they provide to
developers. Given that a triager may change several attributes
of an issue, or change the same attribute of an issue several
times, we calculate triager’s contribution by the number of
modified issues. To measure accuracy, we consider the fraction
of activities without “mistakes”. We also compare triagers’
contribution to that of developers’.

Figure 1 illustrates the number of issues for different types
of triage tasks and Figure 2 shows the quality of different types

of triage tasks conducted by triagers and developers in both
communities. Note Severity, Priority, Product, OS, and Version
represent the task of completing the corresponding attribute.

Figures show that the biggest impact of triagers was on
filtering reports. In particular, the number of issues filtered
by triagers was190K (77% of all filtered issues) in Mozilla,
and106K (27% of all filtered issues) in Gnome. Meanwhile,
triagers rejected issues accurately: in both project,99% of the
rejections were correct, higher than for any other type of task.

Triagers had the second largest impact on completing infor-
mation for newly reported issues, in particular, they completed
attributes for OS, Version, and Severity for a large number of
issues and accurately. Gnome-1 commented on this finding:
“this information is meta data and can be easily asked for and
corrected in one step.” It suggests that completing the basic
information may be a good starting point for beginner triagers.

Figure 2 shows that the triager product assignments are
often incorrect. It seems to be particularly difficult in Mozilla:
“It can be an issue in the underlying stack instead of the
application, and finding the exact low-level library is hardfor
an average triager.”

Table I shows that a large fraction of triager-confirmed
issues are not fixed with 59% and 30% of issues confirmed
by triagers were not fixed (incorrectly confirmed) in Mozilla
and Gnome respectively.

The largest fraction of such issues comes from duplicate
reports. The projects use some duplicate-detection technique,
e.g., Mozilla Crash Reports [7] and Gnome Duplicate-finder,
however, these techniques “are not perfect” [8], especially
for those without stacktraces such as UI, enhancements or
translation problems. Therefore, triager has to search through
existing reports, including the issues that are already fixed or
identified as duplicates.

Therefore, we expect that triagers may be most effective
in reducing developers’ load by filtering irrelevant reports, and
by filling in missing information. But confirming issues and
assigning them to the correct products are not easy tasks for
triagers.

IV. VALIDATION AND L IMITATIONS

As mentioned earlier, we follow procedures described
in [4] to ensure that we accurately interpret Bugzilla data and
measures derived from it.

In particular, we had to iterate to arrive at the method we
used to separate triagers from the other roles based on their
activity profiles. While it is relatively easy to identify devel-
opers via their commits in the VCS, contributors may change
their role over time, with many triagers eventually contributing
code (thus becoming a developer). We, therefore, assigned
a sequence “(role, time)” of tuples to each individual based
on the time when the role was first assumed in the dataset.
And we only considered a contributor as a triager before



she became a developer. Meanwhile, Reporters may conduct
“triage” activities because anyone is permitted to modify the
issues they report. We, therefore, considered contributors to be
triagers only if they triaged issues reported by others.

A particularly vexing problem we faced was the measure
of accuracy for a triage activity. After many iterations and
experimentation with alternative measures we arrived at the
presented heuristic even though it has a number of drawbacks.
For example, typically the severity of a NOTABUG issue is
not considered to be important, thus its final value may not be
verified. We, therefore, did not evaluate accuracy of activities
with no subsequent activities for the same issue, because the
attributes modified by these activities may not have had a
chance to be looked at (and, thus, may not have been verified).

We observed that some products changed their name.
We, therefore, do take it into account in calculating product
assignment accuracy. For example, if the final product valueis
B, but the triager assigned the issue to product A. We do not
consider it to be a mistake if the product A was renamed to B.
To discover all instances of product renaming we searched for
inconsistencies in product names data and validated these as
instances of renaming by confirming via documents describing
the history of that product.

V. RELATED WORK

There has been a substantial amount of work on trying to
understand and help improve the issue/bug tracking practices.
“Who can fix this bug?” is an important question in bug triage
needed to “accurately” assign developers to bug reports. For
example, machine learning techniques [9], [10], and graph
model based on Markov chains [11], were used to better assign
developers to bug reports.

Detecting duplicate (or similar) reports is another common
topic, with studies attempting various ways to compare the
similarity of issue reports. For example, Natural Language
Processing (NLP) techniques [12], and NLP techniques plus
execution information [13] were used to suggest the most
similar bug reports to the new bug report.

Bug fixing is an important topic with a substantial amount
of literature. Common questions include: which bugs get
fixed [14]? how long it takes to fix a bug [15]?

Unlike prior work, this study focuses on understanding and
quantifying triagers’ practice, in particular, what tasksa triager
is involved with and what value triagers may bring to the
project.

VI. CONCLUSION

We study the nature of triage and the impact of non-
developer triagers by analyzing the issue tracking practices
in Gnome and Mozilla.

We found that the critical triage goals are to filter incoming
reports, fill incomplete information, and assign reports toprod-
ucts. We also found some variations in triage practice between
the project that may be attributable to different policies and
user base. Our analysis shows that non-developer triagers make
a substantial contributions by filtering non-fixable issuesand
by filling basic information, while confirming issues and as-
signing products appear to be a difficult challenge for triagers.

We plan to use these results to investigate the reasons
for the difficulties triagers face in product assignement and
in confirming issues and we plan to develop tools to support
such tasks. In particular, we plan to produce a tool that would
help triage practice by predicting the accuracy of all attributes
in an issue report and would suggest ways to correct it. We
hope that our work would be worthy of the following quote
from triager’s guide: “By following these techniques you will
help the important bugs get fixed, as well as optimize precious
developer time.”

VII. A CKNOWLEDGMENT

Partial support by the National Natural Science Foundation
of China Grants 91118004, 61121063 and 61073016.

REFERENCES

[1] A. Mockus, R. T. Fielding, and J. Herbsleb, “Two case studies of open
source software development: Apache and Mozilla,”ACM Transactions
on Software Engineering and Methodology, vol. 11, no. 3, pp. 1–38,
July 2002. [Online]. Available: http://dl.acm.org/authorize?39725

[2] M. Zhou and A. Mockus, “What make long term contributors:
Willingness and opportunity in oss community,” inICSE 2012,
Zürich, Switzerland, 2012, pp. 518–528. [Online]. Available: papers/
willingness.pdf

[3] T. Downer, “Some clarification and musings,” http://tylerdowner.
wordpress.com/2011/08/27/some-clarification-and-musings, 2011.

[4] A. Mockus, “Software support tools and experimental work,” in
Empirical Software Engineering Issues: Critical Assessments and
Future Directions, V. Basili and et al, Eds. Springer, 2007, vol.
LNCS 4336, pp. 91–99. [Online]. Available: papers/SSTaEW.pdf

[5] “The gnome bugsquad,” https://live.gnome.org/Bugsquad, 2012.

[6] “Mozilla triage guide – harnessing the flood of community,”https://
wiki.mozilla.org/QA/Triage, 2010.

[7] “Mozilla crash reports,” https://crash-stats.mozilla.com.

[8] “Finding duplicates,” https://live.gnome.org/Bugsquad/TriageGuide/
FindingDuplicates, 2010.

[9] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proceedings of the 28th international conference on Software
engineering, ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 361–
370. [Online]. Available: http://doi.acm.org/10.1145/1134285.1134336

[10] J. Anvik and G. C. Murphy, “Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,”ACM Trans.
Softw. Eng. Methodol., vol. 20, no. 3, pp. 10:1–10:35, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2000791.2000794

[11] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with
bug tossing graphs,” inProceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, ser. ESEC/FSE
’09. New York, NY, USA: ACM, 2009, pp. 111–120. [Online].
Available: http://doi.acm.org/10.1145/1595696.1595715

[12] P. Runeson, M. Alexandersson, and O. Nyholm, “Detectionof duplicate
defect reports using natural language processing,” inProceedings of
the 29th international conference on Software Engineering, ser. ICSE
’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.
499–510. [Online]. Available: http://dx.doi.org/10.1109/ICSE.2007.32

[13] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach
to detecting duplicate bug reports using natural language and
execution information,” in Proceedings of the 30th international
conference on Software engineering, ser. ICSE ’08. New York,
NY, USA: ACM, 2008, pp. 461–470. [Online]. Available: http:
//doi.acm.org/10.1145/1368088.1368151

[14] P. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “Characterizing
and predicting which bugs get fixed: an empirical study of microsoft
windows,” in Software Engineering, 2010 ACM/IEEE 32nd Interna-
tional Conference on, vol. 1, may 2010, pp. 495 –504.



[15] S. Kim, J. Whitehead, and E. James, “How long did it take to fixbugs?”
in Proceedings of the 2006 international workshop on Mining software

repositories, ser. MSR ’06. New York, NY, USA: ACM, 2006, pp. 173–
174. [Online]. Available: http://doi.acm.org/10.1145/1137983.1138027


