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ABSTRACT
Establishing the stage of decay for human remains is an important
and common task in forensic anthropology, which is presently
done manually by trained experts. We aim to develop a super-
vised vision system, leveraging a large human decomposition im-
age dataset, to perform stage of decay estimation. To minimize
the manual labeling efforts and costs, we introduce and evalu-
ate a label propagation method that exploits both exogenous and
endogenous image attributes in conjunction with domain knowl-
edge. The proposed label propagation method performed up to
twice as fast (100%) as the baseline method and improved the
classification macro-averaged F1 score of the best model from
0.763 to 0.863 (13.1%) when using three stage of decay classes
and from 0.695 to 0.803 (15.54%) when using four stage of decay
classes.

Index Terms— Image classification, Transfer learning, Hu-
man decay modeling, Forensic science

1. INTRODUCTION

Determining the stage of decay (SOD) is a vital and common
task in forensic anthropology. Knowing the degree of decom-
position can reduce the potential pool of decedents that the hu-
man remains can belong to and help identify the deceased in hu-
man remain cases [1, 2]. Presently, establishing the SOD is done
manually by trained experts via a thorough analysis of the corpse
(e.g., soft tissue decomposition, skin discoloration, bone expo-
sure, etc.), surrounding environment and climate, and presence of
particular animals/insects. To the best of our knowledge, there is
no research in the areas of computer vision for SOD estimation.
We aim to make progress in this domain by attempting to build a
supervised vision system to model human decay utilizing a large
image collection collected over the past 10 years at the Forensic
Anthropology Center at the University of Tennessee, Knoxville,
which is home to the Anthropology Research Facility (ARF), also
known as the “body farm”, an outdoor decomposition laboratory.

Manually labeling the entire image collection, particularly be-
cause domain expertise is required, is prohibitive from both a re-
source and time-perspective. As is common for domain-specific

datasets, the ARF image collection contains external (or exoge-
nous) image attributes, such as the donor ID and the date con-
tained in the image filename. Furthermore, since the protocol
requires photos of distinct body parts, it is known that the inter-
nal (or endogenous) image attributes, apart from the SOD, in-
clude particular body parts. While the exogenous attributes are
explicitly associated with each image, the endogenous attributes
are known only implicitly, that is, from the general protocol used
to do the photography. As such, endogenous image attributes, in
order to be used, need to be obtained or derived via some sort of
image classification technique just as the SOD. Besides the ex-
ogenous and endogenous image attributes, we also have basic do-
main knowledge concerning human decomposition. The salient
aspect of the domain knowledge is that the decomposition varies
across subjects (or donors) and body parts and is gradual. In other
words, for the photos taken in the same session (or date) of the
same subject, the same body part should have exactly the same
SOD. The key idea of our label propagation method was to lever-
age the exogenous and endogenous image attributes in conjunc-
tion with domain knowledge to produce images similar to each
image labeled by a forensic expert. The contribution of this work
are summarized as follows:

1. A supervised vision system to perform SOD classification,
utilizing a large human decomposition image collection, is
presented and evaluated.

2. To reduce the need for costly and time-consuming manual
labeling, a domain-aware label propagation method that
leverages the exogenous and endogenous image attributes
was developed. It is shown that our vision system using
the proposed label propagation method provides improved
SOD classification performance.

2. PROPOSED VISION SYSTEM

This section presents the developed vision system (see Figure 1)
we called SOD-VS for Stage of Decay Vision System. The key
parts of SOD-VS are (1) data preparation, which involves man-
ual data labeling, label propagation using the proposed method,
and splitting data into train, validation, and test sets, and (2) a



two-step transfer learning process to build and evaluate the SOD
classification models. The SOD-VS implementation details and
experimental settings are also presented.

Fig. 1: Overview of the developed SOD-VS with the pro-
posed label propagation method.

2.1. The human decomposition dataset
The dataset includes images of decomposing corpses donated
to the ARF. The images were taken by forensic experts at non-
uniform intervals (one or more days apart) from various angles
and of different body parts to show the different stages and areas
of human decomposition. The dataset spans from 2011 to 2022,
and includes over 1.5 million images from over 800 donors.

2.2. Manual data annotation

The quality and size of the training data highly affects a model’s
performance and generalizability. That is, the more representative
and diverse the training data is, the more generalizable a model
is likely to be. In the case of a temporal dataset, such as im-
ages documenting human decomposition in which the subjects’
appearance changes over time, it is important to sample the train-
ing data in such a way that it includes the dataset’s characteristics.
In our case, for instance, images depicting all possible decompo-
sition stages should be included in the training data. Therefore,
we randomly selected a small sample of subjects (or donors) and
then a subset of images, of different body parts, taken from them
over time (i.e., from when they first started to decay until fully de-
composed) instead of randomly selecting images from the entire
human decomposition dataset. This resulted in a subset of 4731
images of multiple body parts across different stages of decay,
which were labeled by a forensic expert with a body part label
(including head, torso, arm, hand, leg, or foot) and a decay score
(DS) label, ranging from 1 (fresh) to 13 (fully skeletonized), us-
ing a modification of Galloway’s [3] human decomposition scor-
ing method to indicate the amount of decay present. The labeled
dataset was named SHD: Stages of Human Decomposition. Fig-
ure 2 shows sample images of SHD. Since the aim is to predict
the stage or level of decay rather than the DS itself, each image’s
DS label was mapped into DS intervals, carefully defined by the
forensic experts, representing a certain SOD. As advised by the
forensic experts, 3-4 stages are commonly used to describe the

(a) No decay (BS=1). (b) Fully decayed (BS=13).

Fig. 2: Example images of the labeled dataset. The images
show the same donor at different stages of decay. The image
resolutions vary from 2400 × 1600 up to 4900 × 3200. Images
are blurred to make them less disturbing to sensitive viewers.

human decay process. Therefore, two versions of SHD were cre-
ated by mapping each image’s DS label into each of the following
two sets of DS intervals: (1) 1-4 (fresh), 5-9 (active decay), and
10-13 (skeletonization), and (2) 1-4 (fresh), 5-7 (early decay), 8-9
(advanced decay), and 10-13 (skeletonization). The mapped ver-
sions of SHD, named SHD-3 (for 3 SOD classes) and SHD-4 (for
4 SOD classes), along with their DS groups (or intervals), class
names, and frequencies (N) are shown in Table 1.

Table 1: The SHD-3 and SHD-4 datasets along with their
DS groups, class names, and class frequencies (N). Note, the
class active decay = early + advanced decay.

Dataset DS group Class name N

SHD-3
1-4 fresh 1479
5-9 active decay 2053

10-13 skeletonization 1199

SHD-4

1-4 fresh 1479
5-7 early decay 1095
8-9 advanced decay 958

10-13 skeletonization 1199

2.3. Proposed label propagation method

The developed label propagation method leverages exogenous
attributes, including the donor ID and timestamp (i.e., the date
the image was taken), and endogenous attributes, including the
body part shown in the image, to propagate the SOD labels of
the labeled samples to the unlabeled samples. The image donor
ID and timestamp are known attributes contained in the image
filename, but the body part is unknown and is derived prior to
label propagation using an existing body part classifier. This
algorithm was named ExoEndo-LP for Exogenous-Endogenous-
Based Label Propagation. ExoEndo-LP accepts the parameters,
(1) id (image donor ID), (2) time (image timestamp) and (3) bp
(image body part), indicating the exogenous and endogenous at-
tributes the algorithm considers during label propagation, which
align with the attributes considered by the forensic experts during
manual labeling. Note, the id parameter is a required parame-
ter, while the time and bp are optional parameters. Specifically,
ExoEndo-LP works as follows: let I = {(xi, (bi, si), di, ti)}ni=1

be a manually labeled dataset with n images, where (bi, si) are
the body part and SOD labels, respectively, di the donor ID,



Table 2: Performance comparison of the baseline method,
LPA [4], and the proposed method, ExoEndo-LP, when ap-
plied to the train data (n=3312). Reported are average run-
times (in seconds) and the number of additionally labeled
(NoL) train samples using label propagation.

Method Runtime (s) NoL
LPA [4] 32 14067

ExoEndo-LP(id, time) 16 6034
ExoEndo-LP(id, time, bp) 20 2250

and ti the image timestamp for the ith labeled image, xi. If
ExoEndo-LP(id, time), meaning label propagation is subject and
time-specific, then given a labeled image, (xi, (bi, si), di, ti) ∈ I,
all images m /∈ I of donor, di, with the timestamp, ti, are
found and denoted as the set Si = {(xj , di, ti)}mj=1. Then, the
SOD label, si, of the labeled image, xi, is propagated through-
out Si resulting in the labeled set, Li = {(xj , si, di, ti)}mj=1.
Else if ExoEndo-LP(id, time, bp), meaning label propagation
is subject, time, and body part-specific, then given a labeled
image, (xi, (bi, si), di, ti) ∈ I, all images m /∈ I of donor,
di, with the timestamp, ti, are found and denoted as the set
Si = {(xj , di, ti)}mj=1. Since the bodypart parameter was passed
in addition to the id and time parameters, only images in Si of
the same body part as the labeled image, xi, will be labeled with
si. Therefore, a previously developed body part classifier (with a
test macro-averaged F1 score of 0.93 and a test accuracy of 0.94)
was used to automate this task by classifying each image in Si

into a body part (see Section 2.2 for body part labels), resulting
in the set of l images denoted as Si+ = {(xk, b̂k, di, ti)}lk=1

where b̂k is the predicted body part such that b̂k = bi for the
kth image, xk. Then, the SOD label, si, of the labeled image,
xi, is propagated throughout Si+, resulting in the labeled set,
Li = {(xk, (bi, si), di, ti)}lk=1. In either case, the labeled set Li

gets added to a final set of labeled images, I+ = I ∪ {Li}ni=1.
To evaluate the performance of the proposed ExoEndo-LP, the

standard graph-based label propagation algorithm, (LPA) [4], was
used as a baseline method. Unlike ExoEndo-LP, LPA [4] does
not consider any image attributes, but is based on the assumption
that closer data points tend to have similar class labels. Specifi-
cally, at every iteration of propagation, each unlabeled sample is
labeled with the label that majority of its neighbors belong to or
to a random selection when there is no single maximum. LPA [4]
reaches convergence when each unlabeled sample has the major-
ity label of its neighbors, or the predefined maximum number of
iterations is achieved. To reduce the size of each labeled and un-
labeled image, a previously trained classifier, excluding the last
fully-connected and soft max layers, was used. Specifically, the
output vectors of length 256 were used as the image vector repre-
sentations to which LPA [4] was then applied.

2.4. SOD classification
To build the SOD classifiers, transfer learning was applied, which
aims to produce effective models by leveraging and exploiting
previously acquired knowledge [5]. In particular, three CNN ar-

chitectures, including ResNet50 [6], Inception V3 [7], and Xcep-
tion [8], pre-trained on the ImageNet [9] dataset, were trained
using the following two-step transfer learning process: (1) freeze
all pre-trained convolutional layers of the base model, and train
newly added classifier layers and (2) unfreeze all layers, and fine-
tune model end-to-end on the human decomposition dataset with
a low learning rate. The newly added classifier layers consisted
of five layers, including one global average pooling layer, one
drop-out of 0.3 layer, two fully-connected layers with 128 and
64 nodes, respectively, and one final softmax layer with the num-
ber of nodes equal to the number of classes to perform multi-
class classification. In addition, to increase diversity during train-
ing, a data augmentation layer, which performed image flipping
(horizontal and vertical) and rotating, was added after the input
layer. Adaptive Momentum Estimation (Adam) was used as the
optimizer with a learning rate of 0.001 and 0.0001 for the first
and second step in the two-step transfer learning process, respec-
tively. Note, training a model from scratch and transfer learning
without freezing the base model, and freezing only a certain num-
ber of base model layers followed by fine-tuning was also tested,
however, model performances were drastically improved using
the proposed two-step transfer learning process.

2.5. Implementation and experimental settings
The developed SOD-VS was implemented using Keras, Tensor-
Flow, and Python, and MongoDB as the database. The SOD-
VS was built and evaluated on the manually labeled datasets,
SHD-3 and SHD-4, using the proposed ExoEndo-LP and base-
line, LPA [4], methods to perform label propagation. Note, label
propagation was only performed on the train and validation data,
but not on the test data to ensure equal classification evaluation.
To evaluate the proposed ExoEndo-LP, ExoEndo-LP(id, time)

and ExoEndo-LP(is, time, bp) were tested. The baseline method,
LPA [4], was implemented using 1000 maximum iterations and a
varying number of neighbors (i.e., 5, 10, and 20). Therefore, a to-
tal of 30 experiments (2 datasets × (3 LPA [4] + 2 ExoEndo-LP)
× three CNN architectures) were conducted. To train and evaluate
the SOD classifiers, each labeled dataset (SHD-3 and SHD-4) was
split into a train, validation, and test set using a ratio of 70:10:20,
resulting in 3312 train samples, 473 validation samples, and 946
test samples. All images were resized to 224x224 and 299x299
depending on the model architecture. All models were trained
on a single TeslaV100-SXM2 GPU with 32GB memory. The
batch size was set to 32 and the number of epochs to 200 with
early stopping set to 20 epochs (monitoring the validation loss) to
avoid over-fitting on the training set. To evaluate the SOD clas-
sifiers, the per-class precision and recall, and macro-averaged F1
score (mF1) on the test data were calculated.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The average runtimes and number of additionally labeled samples
after the baseline method, LPA [4], and the proposed ExoEndo-
LP were performed on the train data are reported in Table 2, which
shows that the proposed ExoEndo-LP is up to twice as fast as the
baseline method, LPA [4]. The baseline method, LPA [4], labeled



Method Model
Per-Class Precision (P) & Recall (R)

fresh early/active advanced skeletonization
mF1P R P R P R P R

SOD-VS
+LPA [4]

ResNet-50 0.0 0.0 0.603 0.8 – – 0.703 0.629 0.45
Inception-V3 0.713 0.682 0.851 0.804 – – 0.827 0.853 0.79

Xception 0.7 0.554 0.819 0.844 – – 0.834 0.844 0.763

SOD-VS
+ExoEndo-
LP(id, time)

ResNet-50 0.77 0.555 0.396 0.22 – – 0.551 0.91 0.54
Inception-V3 0.869 0.844 0.723 0.863 – – 0.824 0.861 0.83

Xception 0.814 0.85 0.718 0.72 – – 0.812 0.778 0.78
SOD-VS
+ExoEndo-
LP(id, time, bp)

ResNet-50 0.797 0.441 0.522 0.911 – – 0.771 0.157 0.497
Inception-V3 0.927 0.844 0.813 0.906 – – 0.892 0.809 0.863

Xception 0.86 0.944 0.869 0.81 – – 0.807 0.817 0.85

SOD-VS
+LPA [4]

ResNet-50 0.5 0.068 0.67 0.324 0.0 0.0 0.568 0.944 0.318
Inception-V3 0.757 0.818 0.701 0.64 0.627 0.576 0.709 0.629 0.683

Xception 0.767 0.659 0.81 0.83 0.567 0.222 0.96 0.902 0.695

SOD-VS
+ExoEndo-
LP(id, time)

ResNet-50 0.707 0.691 0.294 0.12 0.0 0.0 0.54 0.9 0.388
Inception-V3 0.821 0.922 0.64 0.732 0.705 0.505 0.876 0.779 0.74

Xception 0.91 0.954 0.696 0.771 0.71 0.468 0.911 0.884 0.78
SOD-VS
+ExoEndo-
LP(id, time, bp)

ResNet-50 0.567 0.801 0.349 0.494 0.288 0.108 0.631 0.277 0.403
Inception-V3 0.844 0.916 0.706 0.705 0.642 0.675 0.923 0.766 0.773

Xception 0.897 0.908 0.734 0.8 0.75 0.619 0.851 0.872 0.803

Table 3: SOD-VS with the baseline method, LPA [4] (neighbors=5), and the proposed ExoEndo-LP evaluated on the SHD-3
test data (top three) and SHD-4 test data (bottom three).

more samples than the proposed ExoEndo-LP, which aligns with
the fact that since ExoEndo-LP considers images attributes, it is
more restrictive, meaning less candidates are considered during
labeling, resulting in less labeled images than with LPA [4] that
labels each unlabeled image based on the majority class of its
neighbors. Although, ExoEndo-LP produced a smaller labeled
train set, higher SOD classification performance was achieved
as shown by Table 3. This suggests that our method produced
synthetic labels of quality more similar to that of manual labels
produced by the forensic experts, instead of more numerous but,
presumably, less accurate synthetic labels produced by the tradi-
tional label propagation. Table 3 shows that the SOD-VS with
the proposed ExoEndo-LP outperforms the SOD-VS with the
baseline method, LPA [4], when built on the SHD-3 (3 SOD
classes) and SHD-4 (4 SOD classes) datasets. Note, SOD-VS
with LPA [4] performed best using 5 neighbors so only these
results are reported in Table 3. The highest SOD classification
performance on the SOD-3 test data (overall the highest per-
former) with a mF1 score of 0.863 was achieved by SOD-VS
with ExoEndo-LP(id, time, bp) and Inception-V3, and for the
SOD-4 test data with a mF1 score of 0.803 was achieved by
SOD-VS with ExoEndo-LP(id, time, bp) and Xception. Overall,
classification results were higher when three SOD classes were
used, that is, when early and advanced decay were combined
which according to the forensic experts are the most difficult to
differentiate between. Indeed, “advanced” decay had the lowest
recall of only 0.62 for the ExoEndo-LP(id, time, bp) using Xcep-
tion. ResNet-50 was outperformed in all experiments, which

could be due to its deep architecture requiring longer training
time than more shallow architectures, such as Inception-V3 and
Xception.

4. CONCLUSION
This paper presents a novel vision system that utilizes a large
human decomposition image dataset to perform SOD classifica-
tion. The system uses a label propagation method that leverages
the exogenous and endogenous image attributes with the con-
straints based on domain knowledge to improve classification per-
formance (and reduce the manual labeling efforts). The approach
is general in the sense that image collections in other domains
tend to have exogenous and endogenous attributes that could be
used in a manner similar to the one employed in this work.

The improvements from the basic label propagation make the
classification sufficiently accurate for a number of downstream
applications, such as Post-Mortem Interval estimation. Future
work will focus on improving the classification performances of
the early and advanced decay classes since all CNN architectures
struggled to distinguish the two to improve the accuracy of the
four SOD classes case. Simultaneous estimation of multiple en-
dogenous attributes will also be considered as the estimates of SD
may be used to improve identification of body parts as well.

We hope this work can help progress the research of forensic
anthropology in conjunction with computer vision and be used in
other domains where, similar to human decay, a large degree of
variation exists and human labeling is limited from both a time
and resource-perspective.
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