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Abstract

Background: A key benefit of open source software is the ability to copy code to

reuse in other projects. Code reuse provides benefits such as faster development

time, lower cost, and improved quality. There are several ways to reuse open source

software in new projects including copy-based reuse, library reuse, and the use of

package managers. This work specifically looks at copy-based code reuse.

Motivation: Code reuse has many benefits, but also has inherent risks, including

security and legal risks. The reused code may contain security vulnerabilities, license

violations, or other issues. Security vulnerabilities may persist in projects that copy

vulnerable code, even if fixed in the project from where the code was appropriated.

License terms may not be propagated with the copied code, potentially causing license

violations unknown to users of the project.

The extent of the spread of risks through copy-based code reuse, the potential

impact of such spread, or avenues for mitigating those risks have not been studied in

the context of a nearly complete collection of open source code.

Aim: We aim to find ways to detect security, legal, and other risks induced by

copy-based code reuse, determine how prevalent they are, and explore how they may

be addressed in order to help developers safely and effectively reuse code from other

projects.

Method: We rely on World of Code infrastructure that provides a curated and

cross-referenced collection of nearly all open source software to conduct a case study
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of a few known vulnerabilities, conduct an empirical study of a large number of known

vulnerabilities, and to produce a tool to help mitigate security, legal, and other risks.

Results: We find numerous instances of security vulnerabilities and license

violations caused by copy-based code reuse in currently active and in highly popular

projects. The often long delay in fixing orphan vulnerabilities even in highly popular

projects increases the chances of it spreading to new projects. We provided patches

to a number of project maintainers and found that only a small percentage accepted

and applied the patch. We present an approach to produce a universal version history

which links files across multiple repositories and multiple repository hosting platforms

to construct a single history by tracing the version of a single file across all repositories

and revision histories where either parents or descendants of that file reside. We then

show how this approach can reduce the risks of copy-based code reuse.
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Chapter 1

Introduction

1.1 Overview

The rapid growth of high quality open source software has significantly increased

the different kinds of software that can be built upon, thus potentially enhancing

developer productivity [1], increasing code quality [2], and improving software

security [3] [4]. A key feature of open source code is that it may be copied into

new projects∗, but such copying may bring vulnerabilities, license problems, or other

issues [3]. It is important for developers to carefully consider the risks and benefits

of reusing open source code and to take appropriate measures to mitigate potential

issues.

There are multiple ways to copy code into a new project, including:

• Copy-based code reuse: Existing source code is copied and committed into a

new repository, and possibly modified.

• Library reuse: External libraries are linked (either statically or dynamically)

into the new project.

∗Subject to licensing terms of the original and target projects.
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• Package Managers: A centralized repository of software packages, along with

tools to manage installing, upgrading, and removing of the software, allows

external software to be installed and used in a new project.

This paper examines risks of copy-based code reuse, where source code is copied

and committed into the source code repository of the new project. The copied code

may be modified over time in the new repository.

If developers link to external libraries or use package managers to manage their

library dependencies, vulnerable dependencies can be fixed by simply upgrading

software libraries once a fix is available. Tools such as OWASP Dependency-Check†

and GitHub Dependabot‡ exist that monitor public vulnerability databases and notify

developers if their library dependencies are vulnerable. Unfortunately, despite the

existing solutions, developers are reluctant to update their library dependencies [5].

How vulnerabilities spread in library dependency networks and how fast they are

fixed in dependent projects has been studied for different ecosystems [6, 7, 8].

If developers copy code from other projects and commit that code into their own

repositories, the copied code cannot be found by package dependency tools. Such

copying for reuse in other projects is widespread [9, 10, 11, 12]. Much of the work

on software supply chain issues, such as security and license management, focuses on

software dependencies. A software dependency is generally considered an external

component (such as a library or package) that is used within a project. When the

external component is copied and committed into a project’s repository, it is no

longer an external component but rather is now part of the project. This copy-based

reuse approach is sometimes called clone-and-own [13] [14] [15] or vendoring [16] [17].

The cloned component is clearly part of the supply chain, but it is often overlooked

because it may be considered part of the core project rather than a dependency

once it is committed into the project’s repository. This clone-and-own method can

cause problems with code maintenance because of the lack of information about the

†https://owasp.org/www-project-dependency-check/
‡https://github.com/dependabot
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connection between the clone and the original. In fact, even the originating projects

sometimes do not contain public security vulnerability fixes implemented in projects

that copied the code.

Much of this work focuses on projects in languages like C and C++ because they

do not have a standard package manager system. When using a package manager,

it is easier to find the origin of the code and any known vulnerabilities or license

issues. However, many projects using languages with good package managers don’t

take advantage of the package manager. Therefore, we also look at languages like

Java, JavaScript, Python, etc, that do have standard package manager systems.

1.2 Research Goals

Existing research has identified a number of risks associated with code reuse in open

source software, including security vulnerabilities and license violations. Much of the

research considers the use of package managers or linking to external libraries (black-

box reuse). This work examines copy-based code reuse (white-box reuse). It builds

on the World of Code infrastructure to study risks in copy-based code reuse at a scale

that has traditionally been computationally infeasible. The work is divided into three

main areas:

1. We first conducted a case study of a few known vulnerabilities. To conduct our

case study, we developed a tool, VDiOS, to help identify and fix white-box reuse

induced vulnerabilities that have been already patched in the original projects

(orphan vulnerabilities). We sent patches to project maintainers to see if they

would accept and apply the fix.

2. Next, we built on the previous work by conducting a large scale empirical study

to investigate vulnerabilities propagated through copy-based code reuse. We

produced a dataset containing over 3 million files with known vulnerabilities

that have been copied into over 700,000 unique open source projects. The data
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set also contains metadata about each project. We examined the characteristics

of projects that fixed and projects that did not fix the vulnerability once the

fix in the original project was published.

3. Finally, we proposed a method and a tool to help mitigate the risks of copy-

based code reuse by constructing a universal version history of a source code

file across all repositories and repository hosting platforms contained in World

of Code. We show that this tool can help identify copied vulnerabilities that

other tools miss.

The following three sections describe these three areas in more detail.

1.2.1 Case Study about Orphan Vulnerabilities

We define “orphan vulnerabilities” as vulnerabilities in copied code that still exist in

a project after they are discovered and fixed in another project. In some cases, the

copying is a result of forking, and the link to the original code is readily available. In

other cases, especially when the copying is a result of many iterations, the link to the

original code may not exist. Either way, the vulnerable code is publicly exposed until

the orphan vulnerability is fixed or the vulnerable code is removed. The aim of this

study is to determine if the ability to copy open source code software actually results

in widespread orphan vulnerabilities. Orphan vulnerabilities present significant risk

for several reasons. First, an exploit for such vulnerabilities may be widely known,

making it easier to attack software with known vulnerabilities [18]. Second, the code

in such repositories may be copied to other projects that may not be aware of the

vulnerability. Third, code in such repositories may be built into applications and run

by unsuspecting users. Fourth, if a substantial number of open source projects contain

known and unfixed vulnerabilities, open source may suffer reputational damage as a

dump of low quality code where it may be hard to find high quality projects.

To better understand and address the problem of copied and unpatched code, we

first would like to create a tool that, given a vulnerability fix in one project, identifies
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all other projects that contain either still vulnerable or fixed code. Such a tool, if

widely deployed, would have at least two positive impacts: inform maintainers and

users of still vulnerable projects about the risks of the vulnerability in their code and

warn users that contemplate reusing such code about the unpatched vulnerabilities.

Second, we want to determine if and how the still vulnerable projects may differ

from the patched ones. For example, we expect that the more active projects are more

likely to fix known vulnerabilities than the less active projects. This would suggest

that the risks posed by unpatched projects may be attenuated by, presumably, more

narrow deployment. Linus’s Law states that “given enough eyeballs, all bugs are

shallow” [19]. This would suggest that projects with more developers are less likely

to contain vulnerabilities. But little empirical evidence exists to support this [20].

We want to see if our results support Linus’s Law.

Third, we would like to understand how quickly patches to known vulnerabilities

propagate to unpatched projects. We expect that older vulnerabilities are more likely

to be fixed in a project than the more recent ones, as it takes time and effort for

project maintainers to patch their project. Presence of such a trend would suggest

that convenient tools supporting such patching may speed up the deployment of

patches.

Fourth, we want to determine if the tool we introduced detects vulnerabilities

of a different kind than one of the most widely known tools, Dependabot [21], to

determine if the approach used in our tool is practically relevant or if developers may

safely rely on Dependabot.

Fifth, we would like to identify how many of the projects that contain orphan

vulnerabilities are not just forked from the original project where the vulnerability

was fixed. Since many forks are done simply to contribute a patch, not to start a

new development, it would not be surprising if such forks are not updated and do

not patch their code. For any developer, it would be easy to look up the origin of the

fork to get the most authoritative code. However, it may be harder to do with cloned
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projects. If, on the other hand, many of the projects are not forks, it would be much

more difficult for potential users to identify such authoritative versions.

Sixth, we would like to understand to what extent the still vulnerable projects

are willing to accept patches of the vulnerability offered to them. For example, while

Dependabot creates warnings and provides patches, not all projects are willing to

accept them, as the patches may break functionality.

To produce the tool, VDiOS, we build on top of World of Code (WoC) [22]

infrastructure that attempts to approximate the source code in public git version

control systems and provides cross-references among versions of the code, projects,

and changes to the code.

To answer our research questions, we employ a mixed methods approach where we

analyze large volumes of data to select candidates for a case study. Such an approach

is suitable for our investigation because on one hand we have a very large and complex

datasource representing almost all open source code, and we need computational

approaches to select meaningful examples for our case study. The case study approach

is needed because we have limited understanding of the problems, and a case study

approach provides “an in-depth, multi-faceted exploration of complex issues in their

real-life settings” [23]. We carefully pick the subjects (vulnerabilities) to shed light

on all of the above research questions.

It is important to note that here we are exclusively focused on the so-called white-

box reuse where the source code is copied into a new repository. Furthermore, we

only consider matching any exact version of the vulnerable code, though the approach

can be straightforwardly extended to cases where the copied code has been modified

and does not match exactly any of the known fixed or vulnerable versions.

We succeeded in building VDiOS, a tool that identifies projects with orphan

vulnerabilities, and applied it in four cases investigating four vulnerabilities in PNG

library, OpenSSL, and xz compression (written in Go language). None of the

vulnerabilities were reported by Dependabot in thousands of vulnerable projects that

are not forks of the original projects. Only a fairly small fraction of projects accepted
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the pull request fixing the known vulnerability. On the positive side, we found older

vulnerabilities to be more likely to be fixed, and the still-vulnerable projects tended

to be less active than the patched ones.

In summary, our work in this area makes the following contributions:

• We provide a working approach to find file-level exact code reuse in any language

across all open source repositories.

• We provide a tool to implement our approach.

• We conduct a case study with four cases to answer our research questions

regarding vulnerabilities that are spread via file-level code reuse.

Our primary objective is to reduce security vulnerabilities in software by

identifying cases where a known vulnerability has been fixed, but copies of versions

that are still vulnerable are still in use in other projects. This is a well-known security

risk in the software supply chain. The Open Web Application Security Project

(OWASP) lists “Using Components with Known Vulnerabilities” in its Top 10 Web

Application Security Risks (OWASP Top 10) [24]. The software supply chain is a

significant source of data breaches [25], with one estimate suggesting 80% of such

breaches come from supply chain vulnerabilities [26]. Finding file-level duplication

and locating where a file originated helps identify vulnerable or buggy code.

1.2.2 Large Scale Empirical Study

We next build on the orphan vulnerability work described in the previous section

to identify and study orphan vulnerabilities on a large scale. We use the CVEFixes

dataset§ to identify the original vulnerable files and their fixed versions. We then find

copies of both vulnerable and fixed versions of these files in World of Code, along

with metadata about the files and the projects to which they belong.

§https://github.com/secureIT-project/CVEfixes
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If developers use package management software to install and update their open

source library dependencies, then software dependencies can be identified by analyzing

metadata stored in the repository by the package manager. There are a wide

variety of dependency checking and software bill of materials (SBOM) tools that

use this metadata to identify dependencies, then cross-reference software dependency

data with vulnerability databases to identify to which vulnerabilities an application

is exposed. Tools like GitHub Dependabot¶ even submit pull requests to update

vulnerable software components.

However, there are vulnerabilities that are hidden from dependency tracking tools

because these vulnerabilities exist in dependencies that are not documented in package

management metadata. Some developers use open source software libraries by copying

the software into the code repository of a project that uses the library instead of using

a package manager. Gharehyazie et al. [10] showed that cross-project code copying

is prevalent on GitHub. Ossher et al. [9] studied Java projects and found that over

10% of all files in the studied projects were copied from other projects.

We conduct a large scale study of projects which copy files with known security

vulnerabilities. We find characteristics of those projects that may affect the likelihood

of vulnerabilities being fixed. Our work in this area makes the following contributions:

• We conduct a large scale empirical study to analyze security vulnerabilities in

source code in multiple languages that are propagated through copy-based code

reuse. Using the World of Code infrastructure, we are able to analyze the extent

of cloning vulnerable files at a scale that has traditionally been infeasible.

• We present the design and implementation of a tool, VCAnalyzer, which finds

source code files in any language with known security vulnerabilities that have

been copied and committed to open source repositories. We also make the tool

publicly available.

¶https://github.com/dependabot
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• Using VCAnalyzer, we produce a dataset, which we make publicly available,

containing over 3 million files with known vulnerabilities that have been copied

into over 700,000 unique open source projects. The data set also contains

metadata about each project.

1.2.3 Universal Version History

Version control systems were a major advance in software engineering by automating

storing and making accessible a complete history of the source code within a

repository. The rapid growth in open source software and its widespread use made

obvious the need to create Universal Version History (UVH) (a full version history of

a file across all repositories and revision histories where either parents or descendants

of that file reside). More recently, the concept of a universal version history appears

to be articulated in “Improving the Nation’s Cybersecurity” [27] presidential order

with the key component of “Enhancing Software Supply Chain Security.” Specifically,

“maintaining accurate provenance (i.e., origin) of software, providing a Software Bill

of Materials, and ensuring and attesting to the integrity and provenance of open

source software used within any portion of a product.” This recent presidential order

highlights an issue, software supply chain security, that has long been known to

be important for various reasons but which is often overlooked. While the Executive

Order applies to all U.S. federal information systems, the same standards will provide

security benefits to anyone and will certainly be required in many sectors, not just the

U.S. government. In addition to the security implications explicit in the presidential

order, knowing the software provenance and providing a software bill of materials is

also vital for ensuring compliance with license requirements, finding additional useful

features that may be available in different versions of the software, improving code

quality problems, and addressing aspects of developer reputation. The realization

of this idea, however, depends on the ability to collect, clean, curate, and integrate
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version control system data from over a hundred million open source repositories, and

remained out of reach for many years.

In this research, we present an approach to produce a universal version history

which links files across multiple repositories and multiple repository hosting platforms

to construct a single history by tracing the version of a single file across all repositories

and revision histories where either parents or descendants of that file reside. We then

show how this approach can reduce the risks of copy-based code reuse. Unknown

provenance of cloned code can have a number of negative consequences. Our proposed

method and tool can improve a number of areas including security vulnerabilities,

license compliance issues, code quality problems, potential enhancements, and aspects

of developer reputation.

In order to understand and address the risks associated with unknown provenance

in open source software, we would first like to create a tool that is able to automate the

process of producing a universal version history of a file across repositories and even

across repository hosting platforms. Such a tool, if widely deployed, would inform

developers about potential problems that might exist in code that they would like

to reuse. Second, we want to determine if unknown provenance causes problems in

real-world open source projects. For example, are there potential license violations

or security vulnerabilities that are unknown to developers wishing to reuse code from

another project? We find a large class of instances where even the most advanced

licence violation detection tools cannot (and do not) work because it is not possible to

find such violations without a universal version history. Third, we would like to see

if constructing a universal version history can help mitigate some of the problems

caused by unknown provenance. Fourth, we want to determine if our proposed

tool detects different problems than popular dependency management products and

software composition analysis tools. Fifth, we would like to see if our tool can produce

useful results in a reasonable amount of time.

To establish the feasibility of producing the universal version history in general and

in being able to address the issues related to code copying, we introduce a prototype
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tool, UVHistory, which automates the process of finding the universal version history

of a file across all open source repositories. We build on the World of Code [22]

infrastructure to discover and report the complete history of code in any language

from a nearly complete collection of open source software. The results can be used

to look for new features or functionality available in other revisions, look for security

vulnerabilities reported in other revisions, find which developers have worked on the

code throughout its evolution, look for license requirements that may have been lost

as the code propagated, and more. Also, different revisions can be compared with

public sources, such as the National Vulnerability Database, for known vulnerabilities

or other bugs. This version history tracks changes to a specific file even when the file

is copied to a new and possibly unrelated repository, allowing a developer to trace

changes over time and across different repositories and different repository hosting

platforms.

Our work in this area makes the following contributions:

• We propose a computationally feasible approach to produce a universal version

history which links source code by content and its modification history across

multiple repositories and hosting platforms.

• We present a prototype tool, UVHistory, that implements our proposed

approach efficiently over the nearly complete collection of open source software

in World of Code. Our tool is the first application of the universal version

history concept using such a large collection of open source software.

• We evaluate the application of the universal version history concept to address

two specific software engineering problems identified in this paper. We show

that producing a universal version history can help mitigate problems with

potential license violations and security vulnerabilities caused by copy-based

code reuse.
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• We show that the declared license of a project cannot always be trusted, and

we show how our tool can help identify those projects with incorrect copyright

and license information.

1.3 Background

1.3.1 Software Reuse

Software reuse is the practice of using existing software components when building

new software systems [28]. There are two types of software reuse, often referred to as

black-box and white-box reuse. Black-box reuse refers to external code that is used

by a project but generally not committed into the project’s repository. This may

include, for example, linkable libraries. Black-box reuse is code that is not modified

by the developer. White-box reuse refers to the case where source code is reused by

copying the original code and committing the duplicate code into a new repository.

White-box reuse code may be modified by the developer. White-box reuse results in

multiple copies of the source code across multiple repositories. These copies may be

changed, and therefore, there may be multiple different versions of the code. This

paper specifically looks at white-box reuse. We look at code reuse on the individual

file level, not at the function or method level.

White-box reuse presents several challenges. Vulnerabilities and other bugs may

be found and fixed in a copy of the code that exists in one project, but the fixes may

not get propagated to all projects that use the file. Similarly, useful enhancements

may have been added to different versions of the code. The result is that fixes to

known vulnerabilities as well as other bug fixes and enhancements may exist in one

project but not in other projects. Also, license terms may not be properly propagated

from the original code, causing license violations for developers who do not know the

origins of the code. For quality and security reasons, it is important to understand

where the reused code came from, who has worked on it, and if better versions of it
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exist in other repositories. Knowing where else the code exists can help identify if

there are known vulnerabilities in the code by seeing known vulnerabilities in other

projects where the same code exists.

1.3.2 World of Code

World of Code (WoC) [22] is a large collection of open source project repository data

collected from many different source code repository hosting platforms, including

GitHub, GitLab, Bitbucket, SourceForge, etc. WoC contains detailed version control

data, including commits, authors, and file blobs of more than 173 million repositories,

encompassing a nearly complete collection of open source software. We used WoC

version U, which includes data collected in October and November of 2021.

In WoC, commits are linked to files changed in that commit. Files are linked to

metadata, such as timestamps and authorship, as well as file contents, which are called

blobs. As a file changes over time, it is associated with different blobs, representing

the contents of the file after each change. Blobs can belong to multiple commits and

even multiple repositories. If a blob is connected to two repositories, this indicates

that both repositories contain a file with identical contents. Therefore, it is possible

to compare blobs to quickly find exact copies of any file in the WoC.

Due to the vast quantity of open source software available from many different

public source code repository hosting platforms, it has traditionally been too

computationally intensive to find origins of a duplicated piece of code and all revisions

of that code across all open source projects. Therefore, previous research on code

reuse has typically looked at a relatively small subset of open source software.

However, World of Code (WoC) [29] opens up new research possibilities in this area.

WoC provides an infrastructure that makes it possible to efficiently find all versions

of reused source code files across all of the major source code repository hosting

platforms. We build on the WoC infrastructure to find file-level code duplication in

any language from a WoC’s expansive collection of open source software. Additional
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tools that build on WoC, such as Developer Reputation Estimator (DRE) [30], can

be used to help identify the best of several versions of a file.

The tools described in this paper use the World of Code infrastructure to find

duplicate code across many public source code hosting platforms. WoC is a nearly

exhaustive and continually updated collection of open source software, along with

tools to efficiently extract and analyze the extremely large set of code. Without the

infrastructure provided by WoC, it would not be possible to find such a complete

collection of code copied (and possibly modified) across such a large collection of

code in many repositories across many hosting platforms.

Since most open source software today is stored in git repositories, WoC uses

similar constructs to store the data. For example, blobs, trees, and commits in WoC

are identical to the same objects in git and are referenced with a sha1 hash just like

git.

Black-box reuse can be detected with static analysis techniques that look for

dependencies. These dependencies can be checked against public sources like

libraries.io. But white-box reuse, which is the subject of this paper, requires access

to the source code for all projects from which code may be reused. WoC provides

not only the near complete collection of open source software, but also organizes its

databases for efficient searching.

WoC provides a number of mappings that allow us to efficiently extract the

information that we need. WoC maintains a database of several objects including

blobs, files, commits, projects, and authors, allowing for efficient mappings. For

example, given the contents of a file, we compute the SHA-1 hash (using the same

mechanism that git uses) that identifies the blob. We then use WoC’s blob to commit

mapping to get the SHA-1 hash of the commit. The commit to project and commit

to time author mappings give us the project name (from which we can identify the git

repo from which it came) and the author and time of commit (which helps us identify

where the file originally came from). We also use the blob to old blob mapping to

find old versions of the source code of a particular file.
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In order to better understand the entirety of open source in our context, we need to

get a handle on the set of distinct projects. Easy creation of clones in version control

systems result in numerous repositories that are almost entirely based on some parent

repository. There have been various attempts to detect communities in this ecosystem

to address this issue, some using visual models [31] and some community detection

algorithms [32]. We use the latter, utilizing WoC mappings that maps each repository

to a central repository in a detected set of repositories which presumably represent

the same project. This mapping is called project to deforked project (p2P) in WoC.

1.4 Application Scenarios

This section discusses scenarios of high-risk copy-based code reuse. The findings

presented in this paper offer valuable insights for mitigating these risks.

Source code with unknown history introduces risks such as the possibility that

the code could have been modified in ways that unintentionally introduce security

vulnerabilities or other bugs, that intentionally include malware, or that violate license

terms. In this section, we describe in more detail specific scenarios where the universal

version history concept and associated tools help de-risk copy-based code reuse.

1.4.1 Security Vulnerabilities

When a security vulnerability is discovered in open source software, it is typically

documented in the Common Vulnerabilities and Exposures (CVE) system [33]

maintained by The Mitre Corporation. Developers know to look at the CVE system

for possible security vulnerabilities. However, when a vulnerable file has been copied

to other projects, those other projects may not be listed in the CVE entry. When code

with security vulnerabilities is cloned, the target project may inherit the vulnerability.

When the vulnerability is found and fixed in the original project, the fix may not be

propagated to the clone, especially when the target project does not maintain a link
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to the parent. We coined the term “Orphan Vulnerability” to refer to these kinds of

vulnerabilities that exist in copied code even after they are fixed in another project.

We found many instances where vulnerable code in one project was copied into many

other projects, the vulnerability was later identified and fixed in the original project,

but still persisted in many of the copied projects, even many years later. Our proposed

tool would aid developers in knowing the origin and history of the code, which would

allow them to learn about the reported vulnerabilities in the original project.

It is also possible that a vulnerability is found and fixed in a file copied from an

original project, but the fix is not back patched into the original project. Woo et

al. [34] reported an example of this in the jpeg-compressor project [35]. CVE-2017-

0700 [36] describes a vulnerability in the Android System UI that allows remote code

execution. The file jpgd.cpp, which is the source of the vulnerability, was copied from

the jpeg-compressor project. The vulnerability was discovered and reported in the

Android source code [37], and a CVE was created. However, the vulnerability was not

reported and not fixed in the jpeg-compressor project, which is the original source of

the vulnerable file in Android. Therefore, developers who copy and reuse the Android

code can easily find the vulnerability and the patch. However, developers who copy

the jpeg-compressor project are not easily able to find out about that vulnerability,

which was found and fixed in a derivative work. Clearly, it is not safe to assume

that the original source is the best or most secure version. Our research aims to aid

developers in finding not only the origin, but all revisions of a file across all open

source repositories.

In order to secure the software supply chain, developers must know exactly

what components are used in their product. Many organizations are now using

Software Composition Analysis (SCA) [38] tools to find vulnerabilities in code in their

dependencies. Many SCA tools match a project’s dependencies with a database of

vulnerable libraries. A key challenge in building this feature in SCA tools is figuring

out what code is related to a reported vulnerability. That challenge is even more

difficult if a project has copied code without maintaining a link to the original source
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of that code. Our research aids in one small part of that challenge: finding cloned

code in cases where the clone has no clear link to the origin of the code.

1.4.2 License Compliance

Another concern about copied code is license requirements. If a developer wishes to

reuse software, it is important to understand the license terms of the original code.

Trusting the declared license terms is not always safe. In some cases, the complete

license information is not copied with the code. As an example, the jpeg-compressor

project mentioned above is available under the Apache license version 2.0 or in the

public domain. The Android version is only available as public domain. In most

cases, public domain is a good option. However, in some jurisdictions, a specific

license is better than public domain. Knowing the origin of the file would allow a

developer to see the original license information, and they may choose to use the

code from the original project in order to use a different license as allowed by the

original project. We found many cases where the license terms were not propagated

with the copied code. As just one example, libofa [39] contains license information

in a file named COPYING in the top level directory. But the license information is

not included in every source code file. Our UVHistory tool found several cases where

projects copied the source files from libofa without copying the file that contains the

license information. The result is that a developer who copies the copied code without

knowing the origin will not have the license information, resulting in a potential license

violation. It is important to understand the origin of the code being copied in order

to comply with the license terms.

With the significant amount of code reuse in today’s projects, it can be difficult to

keep track of all of the license requirements. The license terms must be understood

and met by the project maintainers. Also, the various licenses used within a project

must be compatible with each other. Software with different licences can be combined,

but combining such software increases the chances of license incompatibilities.
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The 2021 Open Source Security and Risk Analysis report (OSSRA) [40] indicates

that 65% of the codebases audited in 2020 have license conflicts with open source

software. Additionally, it reported that 26% of codebases use open source software

that has no license or a customized license. Knowing the license requirements can

be complicated when a developer reuses an open source project which itself reuses

components from other projects. In some cases, the original license information is

not propagated with the code, which means that the necessary knowledge required

to answer the license question is not available to the developer, making it practically

impossible to comply with the license requirements. Therefore, finding the history of

open source code is critical to understanding and complying with license requirements

of reused code. The tool we present later in this paper, UVHistory, traces a file to its

origins which helps identify missing license information.

Tools in the area of license compliance typically consider explicitly declared

package licenses included via a package manager, a build system, or an exact clone

of lines of code in file. We consider code copied (and modified) among projects

multiple times without copying the license. This history allows us to find the original

license (or vulnerability). We demonstrate that cases like this are common, and

the universal version history we propose will allow developers to find all license

information associated with a specific source code file.

1.4.3 AI-generated code from Large Language Models

The growing use of AI-generated code from Large Language Models (LLMs) raises

concerns about potential risks, such as the presence of security vulnerabilities and

license violations. These risks can be present in large language models for code (Code

LLMs). LLM-generated code might inadvertently introduce security vulnerabilities

or inadvertently incorporate code without proper attribution or adherence to open-

source licenses, potentially causing security, legal and ethical issues. If open source

code with security vulnerabilities is present in the training data of AI, including
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Large Language Models (LLMs), it can inadvertently lead to vulnerabilities in the

generated code. The Common Vulnerabilities and Exposures (CVE) database [33]

and other sources identify known vulnerabilities, allowing the known vulnerable code

to be removed from LLMs. However, our research shows that vulnerable code may

be copied to other open source repositories with no clear link to the original code,

and those copies may not be fixed when the original code is fixed. Additionally, these

“orphan vulnerabilities” are not connected to the CVE entries, and thus there is no

way to know that they should be removed from the LLMs. The result is that known

security vulnerabilities exist in popular LLMs.

License issues with LLM-generated code arise from the potential incorporation of

external code into the code generated by LLMs. We show that code is sometimes

copied to new repositories without the proper license information being copied. Since

code LLMs are trained on a vast corpus open source code, there’s a possibility that the

generated code might inadvertently include code that is subject to specific licensing

terms that are unknown to the user. Legal issues surrounding LLM-generated code

are not entirely clear because AI technology is so new and advancing so fast. In

many cases, there is no legal precedent, and existing copyright provisions haven’t

been tested against AI.

The universal version history that we propose will help identify copied code with

security vulnerabilities that might not be documented in sources like NVD, and with

license terms that might not be otherwise readily identifiable.

1.4.4 Additional Scenarios

Our paper focuses on addressing security and licensing concerns. The universal

version history concept can be valuable in other areas as well, including identifying

other code flaws, such as defects, incompatibilities, or even missing functionality. It

may even support better author attribution, considered an important motivation for
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open source developers [30]. We briefly describe those scenarios here, but leave in-

depth study of these areas for future work. Finding the complete file history, including

all ancestor and descendant code, can be valuable for finding additional useful features

available for a piece of software. Source code is often copied into different projects

and then improved for use in that project. These useful enhancements or fixed bugs

would often be valuable to other projects, but maintainers of other projects are often

unaware of them. An old clone may be missing the latest enhancements/fixes that

could add improved quality, functionality, performance, or other benefits.

Bug fixes beyond just security updates may be added to the original project or

another clone of the project, but missing from the target project. Knowing the origin

and history of the code can help developers find bugs that have been fixed in other

revisions of that code and also to have an idea about the robustness of the code by

seeing how many bugs have been fixed in other revisions. It is also important to know

the likelihood that the original code will continue to be maintained in the future and

to have bugs fixed.

Widely copied code may indicate its high utility or other aspects of quality.

Knowing which developers have worked on the specific code in question can help

build trust in that code. It may also serve as an indicator of popularity for other

developers who may benefit from the widely used functionality implemented in such

code. As such, a tool like the one we propose here could serve as a component of

a code recommender system. The tool could also be used to identify the developers

who create such widely used code and help increase their reputation, direct support,

or other resources, to motivate such production.

Including arbitrary source code from an open source repository has trust and

security issues. How can the developer trust that the cloned code is of high quality

and does not contain security issues. Knowing which developers have worked on

the specific code in question can help build trust in that code. Once our tool has

identified all authors that have contributed to a specific source code file, systems such
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as Developer Reputation Estimator (DRE) [30] can help identify the reputation of

those authors, which can help build trust in the safety of using that file.

1.5 Universal Version History Concept

The concept of a universal version history(UVH) is to track the evolution of a source

code file across multiple repositories. It is the documented history of a file that has

been modified and potentially copied across different repositories which may be hosted

on different repository hosting platforms. This documented history includes verifiable

information about revisions to the file, dates of those revisions, log messages for every

revision, and the chain of custody (who wrote the code, who revised the code, and

what projects included the code).

It is worth defining UVH more precisely and comparing to a common version

control system such as git. The essential entities are versions of the source code

(blobs). In git, each blob can be associated with all versions (commits) of the

repository where it is present, and each version may be associated with one or

more filenames (including the full path from the root of the repository). The blobs

associated with such file with a pathname can be used to determine a version history

of a file (and git provides several heuristics methods on how to do that: the lack of

determinism of file history arises with merges). A particular commit “creates” a blob

if there was no such file in the previous version (parent commit(s)) or if the previous

blob was different. We can thus use the time of the first commit creating a blob (the

same blob can be created multiple times in different folders or even in the same folder)

to obtain the time when the blob was introduced to a repository. Furthermore, each

time a blob is created by a commit, we link it to an old blob: a blob (if any) that exists

in the parent commit for the same filename. Hence within a repository is simply a

graph linking each blob to the “old blob” and to commits that created it (including

all commit attributes such as time, author, commit message, and the pathname of

blob-associated file). Notice that it is a bit different from version control systems
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such as CVS or SVN, where versions of individual files are tracked. Notice that the

resulting graph has several distinct kinds of nodes (e.g., blobs and commits), and

multiples types of links (e.g., blob to old blob, commit to parent commit, and blob

to creating commit). In UVH, we simply add one more type of node: a repository.

Each repository is linked to all commits within that repository and, transitively, to

all blobs contained therein. Blobs, on the other hand, are linked to all commits in all

repositories. The first creation time for a blob is defined the same way. We thus can

identify the original commit and original author for every version of the source code

in World of Code. In addition to the time of the commit, a partial temporal order

based on the old-new blob relation is available. Notably, as we expand the scope of

UVH across repositories we lose some aspects of a sequence. For example, let blob

a be first created in repository A, then in B, and lastly in C. In such case, without

additional information (who did the commit and what other blobs were created), it

would be impossible to determine if repository C got the blob from repository A or

from repository B. For some applications, determining if the blob came from A or

B is not as important as identifying licenses, vulnerabilities, or other attributes of

the blob that may vary among these various repositories. In cases where knowing

the true origin is critical, the UVH reduces the search space required so that manual

inspection is feasible. The tool cannot know the origin for sure, but can point to the

earliest commit into a public repository.

The universal version history (especially in combination with techniques employed

in Mining Software Repositories field) can be used to find or infer other information

about the code such as copyright notices and license information, the reputation of

the authors, the quality of the code, what coding standards were used, the use of

(or lack of) secure coding standards, what vulnerabilities have been reported, what

test methods were used, what security assessments were done, the location where it

was developed and modified, the trustworthiness and reliability of the code, and the

likelihood that the project will continue to be maintained.
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1.6 Summary

This paper investigates the area of code reuse in open source software, focusing

on the copy-based approach. While acknowledging the benefits such as faster

development and cost reduction, it highlights the accompanying security and legal

risks posed by reused code, including vulnerabilities and licensing issues. Leveraging

the World of Code infrastructure, the study conducts a multi-faceted examination,

encompassing case studies of known vulnerabilities, large-scale empirical analyses,

and the development of a pioneering tool to mitigate these risks. The research

uncovers widespread security vulnerabilities and licensing violations in active and

popular projects. It also introduces a novel method for creating a universal version

history, spanning repositories and repository hosting platforms, to enhance the safety

of code reuse in open source development. This study identifies the risks and also

provides solutions to foster safer code reuse practices.
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Chapter 2

Literature Review

In this literature review chapter, we examine the existing research concerning risks

from code reuse in open source software, and we identify gaps in the research that

need further investigation.

Significant amount of research in the area of code reuse is dominated by studies

of projects using package managers or linking external libraries, so-called black-box

reuse. Research on white-box code reuse, where code is reused by copying the original

code, possibly modifying it, and committing the duplicate code into a new repository,

is limited due to the difficulty of searching the entirety of open source software looking

for duplicates. Using the World of Code [22] infrastructure opens new research

possibilities in the area of white-box code reuse. We use World of Code to find

cases of code reuse across open source projects.

2.1 Large Scale Software Archives

Most prior research in the area of copy-based code reuse is limited to a small number

of repositories relative to the totality of open source projects and is limited to a small

number of languages. Newer technologies such as World of Code [29] and Software

Heritage [41] provide an infrastructure to find copied files across a much larger set of

software repositories. World of Code and Software Heritage provide large scale code
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archives. We use World of Code in our work. Related work using Software Heritage

is also relevant.

World of Code [22] is a very large collection of version control data for open

source projects that are hosted on many different source code repository hosting

platforms, including GitHub, GitLab, BitBucket, SourceForge, and more. World of

Code contains detailed version control data, including commits, authors, and file blobs

of more than 173 million repositories, encompassing a nearly complete collection of

open source software. Our tools are layered on top of the World of Code infrastructure

to leverage this huge collection of open source repositories, allowing us to study copy-

based code reuse on a very large scale. The World of Code’s periodically updated and

curated data allows our tools to efficiently search for code duplication in any language

across many different source code repository hosting platforms.

The Software Heritage project aims to collect and preserve all open source software

source code. They collect as complete a collection of software as possible and

encourage others to create curated archives on top of Software Heritage to collect

useful software from the large amount of noise in the full collection. Some work using

Software Heritage is related to our work. Software Heritage Graph Dataset [42] links

together source code file contents, which allows duplicate code to be found across

projects, much like what is provided by the World of Code data maps that we use.

What they do not include is the linkage of the history of each file within a project to all

other projects containing any version of the file. This linkage is what our UVHistory

tool provides. Provenance work by Rousseau et al. [43] using Software Heritage looks

at occurrences of the “exact same file content.” They specifically state that they do

not look at “predecessors or successors in a given development history” and that that

is “outside the scope of the present work.” The strength of our work, and much of the

effort to produce it, comes from tracing the full history by following the predecessors

and successors, thus giving us a complete history that follows the evolution of a file

as it changes over time, not just instances of exact copies.
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2.2 Code Reuse

There is significant research in the area of code reuse through code cloning [44, 8, 45,

46]. This kind of reuse is sometimes called vendoring [16, 17] or clone-and-own [13,

14, 15]. Since our work looks at copy-based code reuse, the use of package managers

is not as relevant. However, some of the work is similar, therefore, we include some

related work in that area as well.

Schwarz et al. [47] studied cloned methods in the Squeaksource ecosystem and

found that 15% to 18% of methods were cloned. Ossher et al. [9] studied 13,000

Java projects from the Sourcerer Repository. They found that over 10% of all files

are clones and that 15% of projects contain at least one cloned file. They found

that most commonly cloned files were Java extension classes and popular third-party

libraries.

Gharehyazie et al. [10] looked at the prevalence of cross-project code reuse and

report large amounts of code cloned across multiple projects. They find that most

cloned code comes from projects in a similar domain. GitHub was the only repository

hosting platform that they looked at, and Java was the only language. In our work, we

look at code in many different languages and from many different repository hosting

platforms including GitHub, Bitbucket, SourceForge, GitLab, and more.

Xia et al. [46] performed an empirical study to find the proportion of out-

of-date third-party code reused by C language open source projects. Using

OpenCCFinder [48], which used external code search engines Google code search and

SPARS [49], they found 123 projects that reused outdated code copied from three

original projects. Similar to our findings, they determined that a significant number

of open source projects reused out-of-date code that contain security vulnerabilities.

They report that OpenCCFinder only returns ”a very small subset” of open source

projects. By using our VDiOS tool layered on top of World of Code’s nearly complete

collection of open source software in any language, we are able to find a significantly

larger number of projects that reuse vulnerable code. They also found that 18.7% of
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the projects studied copied only the source file but no companion files like readme

or changelog files; therefore, the version information and links back to the original

project are lost. This is particularly relevant to our study of license terms, as the

license and copyright information is often only in the companion files.

Kawamitsu et al. [50] studied code reuse across repositories but only looked at

reuse between pairs of repositories rather than across the full spectrum of open source

repositories. They introduce a method to detect code reuse across 2 repositories.

Decan et al. [8], through empirical study using Java projects that use Maven [51],

show that it is common practice to use third-party software components that have

known security vulnerabilities, suggesting that what we found for C and Go languages

in white-box reuse also applies to black-box reuse in Java. Alqahtani et al. [52] link the

NVD∗ with Maven to identify known vulnerabilities in Maven projects. We expand

on that by including white-box reuse and by looking at projects in any language that

may not use or have management tools like Maven.

2.3 Software Provenance

Software provenance refers to the history of source code, including the origin and

chain of custody. This section considers work about provenance and how that relates

to our work finding the origin of a file and how it evolves over time and across different

repositories. Our solution, implemented in our UVHistory tool, traces the provenance

of a file to identify risks in reused code.

Ishio et al. [12] proposed a method to find the original version of cloned source

code files. Their method finds files that are similar, not just files that are exact

copies. We only look for exact copies of any revision of the file. Their method may

find additional matches that our method would miss due to minor changes in a cloned

file before it is committed the first time. Our method may find matches that theirs

miss because we run it over a much larger dataset of code repositories.

∗National Vulnerability Database: https://nvd.nist.gov
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Inoue et al. [53] designed and implemented a tool that used source code search

engines to take source code fragments and find sets of cloned code fragments in order

to track the history of the code. Limitations of those search engines, such as only

allowing keywords and/or code attributes as their inputs or not allowing automated

queries, posed challenges to the tool. The source code search engines they used

(Koders, Google Codesearch, and SPARS/R) are no longer available. We use World

of Code, which is currently actively maintained.

Davies et al. [54] introduced a method to reduce the search space when looking

for the origin of a piece of code in cases where a direct link to the origin is not clearly

available. Once the search space is reduced, manual inspection or other expensive

methods can be used to identify the origin from the reduced set. They demonstrated

their method on a collection of Java files.

Godfrey et al. [55] pointed out that it is becoming increasingly important to

determine the origin of software in cases where code is cloned into a new project

with no clear link to the origin, but that effective techniques for finding such code

provenance do not yet exist. We aim to help fill the gap that they identified.

Woo et al. [34] proposed an approach to find the original software where a

vulnerability originated, and they created a tool V0Finder to find the origin of a

vulnerability. They noted that many CVE [33] reports do not give the correct origin

of the vulnerability. Finding the true origin can help mitigate further propagation of

the security risk. Their method uses function-level clone detection methods, which

can be more precise but not as efficient at large scale as the file-level clone detection

we use. They only used about 10,000 projects, and only from GitHub, for their

evaluation.

Kawamitsu et al. [11] proposed a technique to find which file revision a copied file

comes from in another project for the purpose of keeping copies up to date. They

aimed to identify which revision of a file was reused and how that file was modified

over time. Their method only looked at project pairs to find files that were copied

from one project to the other, but it cannot handle a large number of projects. Ishio
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et al. [12] expanded on the idea of tracking code changes by taking a set of source files

in C/C++ and Java and finding files that are likely to include the original version

of the file. They look at a relatively small subset of projects compared to what is

available in World of Code. They note that tracking file changes across repositories is

tedious. We further expand code change tracking by using World of Code’s massive

collection of projects to track modifications to files in any language across a nearly

complete collection of open source software.

SZZ Unleashed [56] finds information about when bugs were introduced. Cur-

rently, VDiOS relies on the user to specify the commit that introduced a vulnerability,

but if it is not available, all previous revisions of a file are considered vulnerable.

Using SZZ might reduce that set. SZZ Unleashed could help us identify when the

vulnerability was introduced so that we can rule out revisions prior to the vulnerability

being introduced.

2.4 Package Managers

Part of the motivation for our work arises from a lack of research and tools dealing

with copy-based reuse induced vulnerabilities. GitHub’s Dependabot [21] creates

pull requests for projects that rely on vulnerable libraries but only works for GitHub

projects and only when dependencies are defined in a supported package ecosystem.

Our VDiOS tool, on the other hand, looks for file level code duplication and does

not rely on supported package ecosystems. VDiOS also works with projects across all

repository hosting platforms, not just GitHub. Other popular dependency checking

tools such as GitHub Dependency Graph [57], Google Open Source Insights [58], and

OWASP Dependency Check [59] depend on package management metadata and thus

miss copy-based code reuse. Much prior research on vulnerabilities arising from code

reuse looks at reuse through package managers [60, 7, 6, 52].

Kula et al. [61] studied how developers update library dependencies in over 4600

GitHub projects. They found that 81.5% of the analyzed projects contain outdated
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dependencies, and that 69% of the interviewees claimed to be unaware of their

vulnerable library dependencies. The developers also cited extra workload as reason

not to update library dependencies.

Alfadel et al. [60] studied 550 vulnerability reports in the Python ecosystem (PyPi)

and found that the number of vulnerabilities in Python packages is increasing over

time, and that vulnerabilities take more than three years to be discovered on average.

The majority of studied vulnerabilities (50.55%) are only fixed after being publicly

announced.

Zimmermann et al. [7] studied dependencies between package maintainers, as well

as the packages themselves. They examined 609 vulnerabilities in 5,386,237 package

versions with 199,327 maintainers. They found the mean number of dependencies

for an npm package to be 79 packages and 39 maintainers. Packages in the npm

ecosystem have a higher number of dependencies than Java packages and include

micropackages with only a few lines of source code. They found that up to 40% of

packages have dependencies with at least one known vulnerability.

Düsing et al. [6] analysed the direct and transitive impact of vulnerabilities in

Maven, NuGet, and npm. They found that over 25% of vulnerabilities are still

unpatched and that almost 75% of patches are released before the vulnerability is

disclosed publicly. On average, a patch for a vulnerability is released 184 days before

public vulnerability disclosure. They found that 16.3%, 15.5% and 0.5% of all libraries

for npm, Maven, and NuGet, respectively, are released with publicly known vulnerable

dependencies. Some of the vulnerable dependencies were updated immediately after

public vulnerability disclosure, suggesting that monitoring of vulnerability databases

and automatic dependency updates might be configured for some projects.

Decan et al. [62] studied 399 vulnerability reports affecting 269 npm packages and

6,752 releases of those packages. They found that 72,470 other packages are affected

by those vulnerable releases through dependencies. Of the 269 vulnerabilities, 1/3

were fixed by discovery date, 1/2 were fixed after discovery but before publication

date, and 15% were fixed after discovery date or not at all. They found that more
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than 40% of packages cannot be fixed by upgrading the vulnerable package due to

dependency constraints that do not allow the fixed package to be installed.

Pashchenko et al. [63] studied dependency managements and its security implica-

tions by interviewing developers. They found that developers focus on functionality

over security when choosing dependencies. While developers perceive security

fixes easy to adopt, they avoided updated dependencies, if possible, to avoid

breaking changes and preferred security fixes that did not include improvements

in functionality. If no fix is available, developers preferred to disable affected

functionality or to do nothing, although a few developers had created their own fixes.

Our tool specifically looks at cases where code is copied from one project and

committed into the repository of another project. Most commercial SCA tools also

reply on package manager information, although some include limited support for

vendoring.

2.5 Security and License Compliance Issues

Davies et al. [64] performed manual license and security audits in real-world

applications and found potential legal and security issues in some of the studied

applications.

Kula et al. [5] looked at Java projects that use a dependency management tool

and found that 81.5% of projects in their study still have outdated dependencies,

many with security vulnerabilities. They also, through surveys, found that 69% of

the developers were not aware of the vulnerability. We hypothesize that the number

of outdated cloned copies of files that have no link back to the origin would be even

higher.

Chen et al. [65] designed and implemented a machine learning system to help

identify which libraries in open source dependencies contain vulnerabilities listed in

the National Vulnerability Database (NVD) [66]. It relies on package management

systems including Maven Central, npmjs.com, and PyPi.
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German et al. [67], through an empirical study of license issues in open source

projects, show instances of incompatible licenses when open source code is reused in

different projects. They found that there are often mismatches between the declared

license of a package and the license of the source code within the package, and also

incompatibilities between packages contained within one project. They note that

auditing of license issues is “quite complex” and suggest that improving automation

in this area would be beneficial. This kind of automation improvement is exactly the

aim of our work.

Wu et al. [68] looked at license inconsistencies within large projects. In their

conclusion and future work section, they say “These problems highlight the need

for a method to find and maintain provenance between applications.” Our work,

using World of Code, looks for inconsistencies across all open source projects as they

suggest.

Wolter et al. [69] found that the license declared at the top level of the repository

does not always match the license found in source code files. With this information,

we know that we need to look deeper to know the correct license terms for a particular

source code file.

Baltes et al. [70] show, through a large-scale empirical study of Java code snippets

from Stack Overflow, that many code snippets are used without complying with

license terms.

Qiu et al. [71] looked at dependency-related license violation and report a relatively

small number of dependency-related violation in npm. The small number is in part

because permissive licenses are more common in npm. Our work looks at code clones

rather than dependencies.

2.6 Universal History

Early work on finding a complete version history was conducted by Chang and

Mockus [72]. They looked for cases where directories of source code contain many
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files with the same names and then compared those files to find clones. The matching

files and their version histories were used to construct the file history. In follow-

up work [73], they proposed a large-scale copy detection and validation process and

improved reuse detection. Mockus [74], using the same algorithm, found significant

large scale code reuse where many files were copied. At the time of their work, there

were no complete collections of open source code like World of Code, which limited

their work to a small number of repositories and only worked when multiple files in

a directory were duplicated and the filenames did not change. They concluded that

there was still a challenge to scale the work to very large numbers of open source

repositories [73]. World of Code provides the infrastructure to meet that challenge,

which is the goal of this work.

2.7 Commercial Tools

There are many commercial Software Composition Analysis (SCA) tools which help

find security, license, and code quality issues. Because these tools are proprietary,

they are harder to evaluate. Our primary goal is to expand on the publicly available

research. But we also look at these commercial tools. Some tools claim to find clones

from a large collection of open source software, but we do not have access to that

collection and cannot evaluate its completeness. We tested some of those tools and

point out where our work is different.

Current open source SCA tools that detect license compliance issues typically look

at licenses that are explicitly declared in a project being reused through code clones

or through a package manager. They trust the declared license in a project or source

code file. What they fail to find are cases where code is copied from project to project

multiple times, and sometimes modified, without the license information also being

copied. The history is lost, making it impossible to find the original license.

Similarly, with vulnerabilities, current tools fail to trace the history as a file is

modified and copied across repositories and, therefore, often miss vulnerable code
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that has been copied from a known vulnerable project to a different project. Our

research shows that cases like this are common and that our tool can help identify

these cases.

We tested several commercial tools by creating a small test case example project.

We find that, in some specific cases, our tool can help a developer find an issue that

commercial SCA tools miss.
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Chapter 3

Methods and Tools

In this chapter, we present the methodologies and tools driving our research, aimed

at highlighting the risks of copy-based code reuse and enhancing the security and

reliability of open source development. Our approach encompasses a case study,

including the development of VDiOS, a specialized tool to identify white-box reuse-

induced vulnerabilities. We reveal the findings of a large-scale empirical study

spanning millions of files and thousands of open source projects. Additionally, we

introduce a universal version history tool that transcends repository and platform

boundaries, enabling the identification of copied vulnerabilities.

3.1 Case Study Research Methodology

We conducted an exploratory case study to better understand issues surrounding the

spread of software security vulnerabilities caused by copying open source software.

We chose to use an exploratory case study because we are in the early stages of

understanding the problem and possible solutions. We hope to generate ideas to

mitigate these types of security vulnerabilities and spur additional academic research.

The case study approach allowed us to look at a small number of widely-reused

projects in depth and within their real-life context. This in depth examination allowed
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us to increase our understanding and gain insights that would otherwise be difficult

to obtain.

Consistent with best practices conducting case studies, we investigated a small

number of cases in depth and in their context using multiple data sources and

emphasizing qualitative data and analysis while also collecting significant quantitative

data. The subject of each case is a known vulnerability (as described by the Common

Vulnerabilities and Exposures (CVE) database [33] hosted at MITRE) and the open

source project containing the vulnerable code as described by the CVE entry.

We examined in detail four specific cases of known software security vulnerabilities

that have been fixed in their original project repository. We used multiple cases

to increase the confidence of the results and increase generalization of the results.

We avoid making broad generalization claims based on just four cases, although we

believe that our results provide insights that are applicable to a broader range than

just our four specific cases. We carefully selected these four cases by searching for

vulnerabilities in popular open source projects that have been widely copied. We

used VDiOS to screen out cases of known vulnerabilities in code that is not widely

copied. We specifically selected common cases, not unique or edge cases. We selected

a vulnerability in libpng∗ that was in the code for a long time, allowing for many

copies over that time. We selected a new and an old vulnerability in OpenSSL† to

highlight differences in the age of the vulnerability. OpenSSL was chosen in part

because it is critical to Internet security. We selected the xz package‡ written in the

Go language to contrast with the other projects that were all C language projects.

We selected cases that we believe are representative of the broader group of known

vulnerabilities in open source software. Our cases represent both literal replication

(because they are representative of the broader group of known vulnerabilities) and

theoretical replication (because we compare an old vs new vulnerability in the same

project and projects in different programming languages).

∗http://www.libpng.org/
†https://www.openssl.org/
‡https://github.com/ulikunitz/xz
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We examined these four cases in context by looking at specific open source projects

that reuse vulnerable code and that are hosted on public hosting platforms including

GitHub, Bitbucket, SourceForge, and others. By looking at the cases in context, we

see a realistic picture of vulnerable code reuse in the real world rather than contrived

results we might get in a traditional lab-based study.

Multiple data collection techniques provided corroborating evidence. We used

artifacts, observations, and direct contact with project maintainers (through pull

requests and issues), allowing us to gather more insights than using just one method.

Looking at artifacts (the code actually committed in real world repositories) provides

a concrete view of actual practice without any biases. Our observations allow for

some qualitative analysis. Contacting project maintainers provides more insight into

their willingness to address issues once they are aware of the vulnerabilities.

Case studies tend to focus more on qualitative data than quantitative data. Our

study contains both. VDiOS produces significant quantitative data, which we report

in detail. We also attempt to describe behavior based on our observations and

interactions with project maintainers. Our results are also being used to craft survey

questions for future research to collect more qualitative data to explain the behavior

of project maintainers.

Our primary data source is World of Code. We also collect some data directly from

the source code hosting platforms like GitHub, Bitbucket, SourceForge, and others.

Data collection is accomplished using the VDiOS tool that we developed specifically

for this research project. VDiOS is described in detail in section 3.2.

We started by selecting a sample of known vulnerabilities, identifying all affected

(and fixed) versions of the source code files in the primary repositories and using WoC

to identify all other OSS projects that have versions of the code that either precede (in

version history) the affected version or is modified past it without applying the patch.

We codified this algorithm as a tool that can be used for any vulnerability or any

other type of defect. We then obtained and analyzed the numbers, activity states, and

properties of the affected, patched, and potentially patched projects. Furthermore,
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we manually investigated many instances of cases where the code is still vulnerable to

identify if the project is still active, if the defect has been fixed, and if not, whether

the maintainers are willing to accept the patch.

3.2 The VDiOS Tool

In this section we describe VDiOS (Vulnerability Detection in Open Source), our

tool for finding file level code reuse across all open source repositories and tracing

the version of a single file across all repositories and version history. We build on

the WoC infrastructure to find duplicate files at a scale that has traditionally been

computationally infeasible.

VDiOS takes the contents of a file and finds all duplicate versions of that file

or any revision of that file across all of the open source software available in WoC.

These vulnerable files are then traced back to the open source project in which they

are contained. These projects may be hosted on many different source code hosting

platforms such as GitHub, Bitbucket, SourceForge, etc. VDiOS displays a URL link

to the project and the affected file or files within the given project.

Our approach looks for file-level reuse, that is, exact copies of entire files. We

include all files in the version control history when looking for duplicate files. This

allows us to find files that were duplicated and then modified.

When looking for Security Vulnerabilities, VDiOS has the ability to separate

revisions of files into two lists: revisions that contain the vulnerability and revisions

that do not contain the vulnerability. This allows VDiOS to identify projects that

are still vulnerable, projects that used to be vulnerable but have now been fixed,

and projects that used to be vulnerable and have changed but we do not know if the

change fixed the vulnerability.
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Figure 3.1: VDiOS Architecture Diagram
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3.2.1 Architecture

VDiOS is implemented as a layer on top of the World of Code (WoC) shell APIs [29] as

shown in figure 3.1. The WoC shell APIs provide a convenient way to access the WoC

data. Specifically, VDiOS needs access to WoC’s data maps as well as information

about the objects. WoC stores data maps in a way that allows VDiOS to efficiently

look up information. The specific information we need pertains to blobs, commits,

projects, files, authors, and times.

There are two primary WoC shell APIs used by VDiOS: getValues and showCnt.

showCnt is used to show the content of the basic git objects blob, tree and commit.

getValues is used to access the WoC data maps to get the following information:

• blob to commit (b2c) finds all commits of the specified blob.

• commit to project (c2p) finds all projects containing the specified commit.

• commit to Project (c2P) is like c2p except it finds deforked [32] projects.

• commit to parent commit (c2pc) and commit to child commit (c2cc) finds the

parent and child commit respectively from a given commit.

• commit to time author (c2ta) finds the time of the commit and the author of

the commit.

• blob to old blob (b2ob) finds the predecessor of the given blob. old blob to blob

(ob2b) is the inverse of b2ob.

VDiOS also retrieves a small amount of data directly from the source code hosting

platform (GitHub, Bitbucket, GitLab, etc). A system independent interface allows

VDiOS to use a single call to get data, hiding the platform specific details. A system

dependent layer, which calls the appropriate API (for example, the GitHub API),

provides a ”glue layer” to connect to the popular hosting platforms to retrieve the

data. The system dependent layer can be extended to support additional hosting

platforms as needed.
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The VDiOS output is a set of reports generated in HTML format for viewing in

a web browser.

3.2.2 Algorithm

VDiOS is divided into four phases, each of which is described in this section.

The first phase identifies all of the blobs that contain the vulnerability and all

the blobs that contain the fix. Starting with a commit that fixes a vulnerability,

VDiOS finds the relevant blob or blobs in that commit. When looking for a security

vulnerability, it is likely that not only is the revision before the fix vulnerable, but

the predecessors of that revision are also likely to be vulnerable. VDiOS uses WoC’s

blob to old blob mapping or commit to parent commit mapping recursively to find all

predecessor blobs. If we know the commit that introduced the vulnerability, VDiOS

looks at only blobs between the breaking commit and the fixing commit. It is highly

likely that all of those blobs will contain the vulnerability. VDiOS next finds the

descendent blobs using WoC’s old blob to blob mapping or commit to child commit

mapping. These blobs are highly likely to contain the fix. Manual inspection of these

lists can be done at this point to confirm that the blobs in the first list are vulnerable,

and the blobs in the second list are fixed. At the end of phase one, we have two lists

of blobs. The first list contains one or more blobs that contain the vulnerability. The

second list contains zero or more blobs that are fixed.

The second phase searches for all projects in WoC that contain a duplicate of

any of the vulnerable blobs identified in phase one by using WoC’s blob to commit

mapping and commit to project mapping. Note that VDiOS looks for duplicates in

any revision within a project. That is, it will find all projects that have ever contained

the vulnerable blob even if it has been fixed or removed in the most current version.

At the end of phase two, we have a list of all projects that have ever contained one

of the potentially vulnerable versions of the file.
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The third phase checks if the blob(s) in question are in the most current revision

of the project. In this phase, VDiOS looks through the projects found in the second

phase. Those are projects that have at some point in time contained a known

vulnerable blob. We now want to find out if the project still contains a vulnerable

blob. Using the hosting platform’s API, we find the most current revision of the

file. Now we look to see if that revision matches any of the vulnerable blobs. If so,

we know the project still contains the vulnerable code. Next, we look to see if that

revision matches any of the known good blobs. If so, we know that the vulnerable file

has been fixed. If we do not find a potentially vulnerable or known good file, then

we know that the project has contained a vulnerable file, that file has been changed,

but we do not know if the change fixed the vulnerability.

The final phase generates the reports in HTML format for viewing in a browser.

The first page of the report shows the commit that fixed the vulnerability (if

applicable). Next, it has a link to a list of blobs and filenames where the vulnerability

was fixed, a link to a list of ancestors of those blobs (which presumably contain the

vulnerability), and a link to the descendants of those blobs (which presumably all

contain the fix). Finally, it has links to lists of vulnerable projects, not vulnerable

projects, and projects where the vulnerable file has been changed but we do not know

if it is fixed or if it is still vulnerable. For each of the three categories (vulnerable,

not vulnerable, and unknown), a report provides more detailed information.

3.3 Large Scale Empirical Study

Motivated by previous research showing vulnerabilities propagated by copy-based

code reuse in a small number of vulnerable projects [75, 76, 77], we planned a large

scale empirical study of orphan vulnerabilities. We focused on cases where files

containing vulnerable code are copied from one project and committed into another

project, as these could be detected in a scalable manner using the World of Code

infrastructure.
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Our primary goal is to better understand the problem of security vulnerabilities

propagated through copy-based code reuse. We want to understand the extent of

the problem, characteristics of projects affected, and characteristics of projects that

remediate orphan vulnerabilities. Based on these goals, we constructed five research

questions to guide our study.

RQ1: How prevalent are orphan vulnerabilities? What are the characteris-

tics of orphan vulnerabilities? Our initial research question delves into the prevalence

of orphan vulnerabilities, aiming to ascertain both the extent of duplication of original

vulnerabilities and the frequency of such occurrences. Additionally, we explore

how programming languages influence the frequency of these orphan vulnerabilities,

conducting a thorough analysis of the top 20 most duplicated cases to gain deeper

insights.

RQ2: What are the characteristics of projects that have orphan

vulnerabilities? Our second research question revolves around examining the

attributes of open source projects housing orphan vulnerabilities. We quantified

the number of vulnerabilities duplicated within each project and scrutinized various

facets of project activity, encompassing its lifespan, commit frequency, authorship,

popularity (indicated by stars), and additional metadata. This comprehensive

analysis seeks to uncover commonalities and patterns among these projects, shedding

light on their distinctive characteristics.

RQ3: How many orphan vulnerabilities are fixed? Our third question

centers on the remediation of orphan vulnerabilities. Although all vulnerabilities

within our dataset have been successfully addressed in their original projects, our

focus shifts to understanding the extent to which orphan vulnerabilities are fixed.

While some of the copied vulnerable files may have been generated through package

managers which offer mechanisms for localized package installations under the

development directory, many others have been created through manual code copying.

Unlike dependency tracking tools that aid developers in resolving issues arising from

package manager installations, there exists no mechanism to alert users when security
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patches become available for manually copied code. This investigation aims to shed

light on the challenges and solutions related to the remediation of these orphan

vulnerabilities.

RQ4: How do different characteristics of projects affect how many

vulnerabilities are fixed? Our research acknowledges the variance in project

behavior concerning the updating of vulnerabilities through package management

tools. Indeed, while certain projects may opt not to rectify any orphan vulnerabilities,

others exhibit a commitment to addressing some or even all of these vulnerabilities.

Our study looks at the factors influencing which projects decide to fix vulnerabilities

and the proportion of vulnerabilities they successfully address within their codebase.

We also consider the interplay between project characteristics (such as programming

language and project activity) and vulnerability attributes, exploring how these

elements influence the likelihood of vulnerabilities being fixed.

RQ5: How long does it take for an orphan vulnerability to be

fixed? In the final phase of our investigation, we turned our attention to the time

aspects of orphan vulnerability remediation. Recognizing the critical importance of

addressing vulnerabilities promptly to safeguard systems, our analysis focused on

determining the duration required to fix these vulnerabilities. Our aim was to assess

whether vulnerabilities were resolved before they became susceptible to widespread

exploitation, as a belated remedy might offer little improvement over the absence

of a fix, particularly if the software had already been exploited. Additionally, we

looked at the influence of project activity levels on the timeframe for vulnerability

mitigation, seeking to uncover how the activity level of projects impacted the speed

of remediation efforts.
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3.3.1 CVEfixes Dataset

Vulnerability databases such as the National Vulnerability Database (NVD)§ contain

information on publicly reported vulnerabilities. Each NVD vulnerability has been

assigned a Common Vulnerabilities and Exposures (CVE) identifier before inclusion

in the database. The NVD provides a description, severity metrics, affected software

configurations, and links to references about the vulnerability.

Bhandari et al. [78] extracted CVEs with fixing commits, analyzed the files

changed by these commits, and created a dataset containing vulnerabilities and

their fixes - the CVEfixes dataset.¶ This dataset contains information on 5,495

vulnerability fixing commits in 1,754 projects covering 5,365 CVEs. They also

provided the code used to generate their dataset, so that future researchers could

generate updated versions of the dataset.

We ran the CVEfixes code to generate a current database of CVEs with fixing

commits as of November 2022. We removed vulnerabilities whose fixes were identified

as being in non-executable files like READMEs from the dataset. We also eliminated

vulnerabilities where more than one file was modified in the fixing commit, as our

data collection was designed to handle one file per vulnerability. The resulting dataset

contained 3,615 CVE entries.

3.3.2 The VCAnalyzer Tool

To study orphan vulnerabilities at a very large scale, we created the VCAnalyzer

(Vulnerable Clones Analyzer) tool. VCAnalyzer leverages the World of Code

infrastructure to find vulnerabilities that are propagated through copy-based code

reuse in open source projects at a scale that has traditionally been infeasible. The tool

starts with an initial set of vulnerabilities with fixing commits. For each vulnerability,

it searches for projects which have copied a vulnerable file and collects statistics about

§https://nvd.nist.gov
¶https://github.com/secureIT-project/CVEfixes
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those projects. VCAnalyzer uses the World of Code to find duplicated files. It collects

data about files and projects from both World of Code and APIs provided by code

hosting platforms such as GitHub, GitLab, and Bitbucket.

The input to VCAnalyzer is the CVEfixes dataset CSV file, which describes one

vulnerability per line. Each line identifies the vulnerability by its CVE number and

includes the URL of the repository containing the vulnerable code, the path of the

original vulnerable file, the identifier for the git commit that fixed the vulnerability,

the date of the fix, and the date on which the CVE record was created. VCAnalyzer

uses hash-based matching of files to quickly identify copies of vulnerable files in World

of Code. VCAnalyzer examines the entire history of a file, starting by retrieving the

entire commit history of the original vulnerable file. It then finds all revisions of the

vulnerable file before the fixing commit and all revisions after the fixing commit. The

commit history is retrieved using the API of the hosting platforms. File revisions

that predate the fixing commit are potentially vulnerable files. We refer to these as

bad blobs. A blob refers to the contents of a file at a specific commit. We refer to

the blob created by the fixing commit and blobs that postdate the fixing commit

as good blobs, as they do not contain the vulnerability. VCAnalyzer also identifies

blobs that are found in both lists, which indicates that a fixed version of the file has

been replaced by a vulnerable version of the file, possibly because the fix introduced

bugs or incompatibilities. If the fixing commit is not found in the default repository

branch, the tool skips that CVE.

VCAnalyzer searches World of Code for projects that have ever contained blobs

from the bad blob list to identify projects that have contained orphan vulnerabilities.

These projects are found by first using the World of Code’s blob to commit (b2c)

mapping to find all commits containing each bad blob, and then using the commit

to project (c2P) mapping to find all deforked projects containing those commits.

These are the projects that have copied a known vulnerable file and thus contain an

orphan vulnerability. The c2P mapping uses a community detection algorithm [32] to

find unrelated projects. The mapping excludes forks and exact copies, unless a fork is
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developed into an independent project. For each such project, VCAnalyzer determines

if the project has been fixed by finding projects that contain a blob from the good

blobs list. The tool identifies the date on which the project copied a vulnerable file

as the date on which a bad blob was first committed to the project. It identifies the

vulnerability fixing date as the first date on which a good blob was committed. Many

vulnerabilities are never fixed, so the fixing date may be NULL.

If a project only contains vulnerable versions of the file (from the bad blobs list),

then the project is considered still vulnerable. If the vulnerable file has been replaced

with a fixed version of a file from the good blobs list, then the project is considered

not vulnerable. If the vulnerable file has been replaced by a file that is in neither

the good blobs nor the bad blobs list, then it is categorized as unknown, as we know

the vulnerable file has been changed, but we do not know if the change fixed the

vulnerability.

Finally, VCAnalyzer collects statistics on each project copying a vulnerable file.

Most statistics are available from World of Code. For some statistics, the tool uses

the API of the repository hosting platform to retrieve the information directly. The

information collected includes the number of authors, date of earliest commit, date of

latest commit, number of months the project was active, root fork, number of stars,

number of core developers (who commit more that 80% of the code), community size,

total number of commits, number of forks, and the most used language in this project.

3.3.3 Empirical Study Method

We conducted a large scale empirical study by mining open source software using

the VCAnalyzer tool described above. We studied copy-based code reuse of files

containing publicly disclosed vulnerabilities and used those results to answer our

research questions.

We cleaned the CVEfixes data by removing vulnerable files whose names indicate

that the file is not part of the source code that would be executed then the program is
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run. We removed files with the names CHANGES, KConfig, and README, as well as files

with the following suffixes: .md, .old, .txt, and .svn-base. Files with those suffixes

will not be treated as source code. Files with the .svn-base extension are part of

subversion repository structure and might have been included in a git repository when

a subversion repository was converted into a git repository. We can ignore these files,

as any changes to the actual copy of the vulnerable file would not be reflected in the

subversion repository structure. We also removed copies of vulnerable files identified

by VCAnalyzer, where VCAnalyzer reported missing data in critical fields like the

identification of the first vulnerable version, the pathname, or project activity.

We only consider files that are currently publicly available. World of Code

maintains copies of all files in all projects, even if they are removed or made private.

If the potentially vulnerable file is removed from a project or if the project is no longer

publicly available, we exclude that project from our results.

To compute the number of occurrences of orphan vulnerabilities, we count the

number of vulnerable files identified by VCAnalyzer outside the original project for

each CVE identifier. For each original and copied vulnerability, our dataset contains

the pathname of the file containing the vulnerability. We identify the programming

language used in vulnerable source files by the file suffix found in pathnames. For

example, we identify files as C source code by the presence of either .c or .h file

extensions.

Each vulnerability in the CVEfixes dataset includes the URL for the git repository

in which the vulnerability was found. Multiple vulnerabilities can share the same URL

if they were found in the same repository. VCAnalyzer creates project names for each

vulnerability using the hosting platform name and the last two path components of

the git repository. Project names are case sensitive. We do not merge projects with

similar names. The same process is used when creating project names for copied

vulnerabilities found in the World of Code. The collection of project metadata is

explained in Section 3.3.2 above.
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We create a subset of projects with high levels of activity by selecting projects

with at least 100 GitHub stars. We use GitHub stars as a metric, since the numbers

of commits and authors are copied to the new project when a project is forked, while

the number of GitHub stars is not. The threshold of 100 stars is often used in prior

work [79, 80].

We compute multiple project metrics. The first metric we examine is the primary

programming language of the project. This metric is provided by the World of

Code. As projects often use multiple programming languages, we also identify the

programming language used in the vulnerable file using the file suffix, as described

above. If a filename does not contain a “.”, the file suffix is blank. For each project

metric, we filter out values over the 99th percentile to exclude possible outliers.

We classify orphan vulnerabilities as fixed, unfixed, or unknown using the

approach described in Section 3.3.2. For each orphan vulnerability that was fixed,

we calculate the survival time by computing the time difference between the first

fixing commit and either the first vulnerability introduction commit or the original

vulnerability fix time, depending on which came later. We then report characteristics

of the survival time.

3.4 The UVHistory Tool

UVHistory is our tool for automating the process of tracking changes across all open

source repositories and their version histories by operationalizing the universal version

history concept introduced in section 1.5. It supports the study of issues concerning

source code reuse in real-world open source projects.

3.4.1 Infrastructure: World of Code

Before describing our tool, we need to introduce the infrastructure, World of

Code(WoC), on which our tool is built. World of Code [29] is a nearly complete
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collection of all publicly available open source software. Software source code is

periodically collected from many sites including GitHub, Bitbucket, SourceForge, and

many others. The software is then curated and stored using methods that allow for

efficient searching of the very large amount of source code collected. World of Code,

which aims to support research in software engineering, currently contains over 20

billion Git objects with over 100 million unique public repositories (not including

forks or empty repositories) [81]. Since most open source software today is stored in

Git repositories, World of Code stores data as Git objects. When we use the terms

blob, commit, and tree, we are using the terms as they are used in Git. For example,

a blob refers to the contents of a file and is named by a SHA-1 hash.

This World of Code infrastructure, with its extensive collection of open source

software, allows us to find code duplication across projects where no link to the origin

exists on a scale that is not possible without this kind of infrastructure.

3.4.2 UVHistory

UVHistory takes as input the contents of a file and finds all duplicate versions of that

file or any revision of that file across all of the open source software available in World

of Code.

UVHistory specifically looks for source code from open source projects that is

copied and committed into different projects. This approach is different than most

existing tools for identifying vulnerabilities and licenses which look for external

libraries that are linked in or look at package management systems for dependencies.

Some systems tie into the build process and detect any libraries or other third-

party dependencies. But these approaches miss code that is copied and committed

into the source code repository without any link to the original project. Our tool

is different than other tools in that it is specifically designed to find these kinds of

file-level copy dependencies that have no link to the original project and are therefore

missed by existing tools.
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Since World of Code archives source code repositories over time, we are able to

trace the history even to projects which are no longer available on public source code

hosting platforms.

3.4.3 Algorithm

For simplicity we assume that our algorithm is provided one or more sha1 hashes

computed via the method used by Git. A user of our tool may, instead, provide

an entire repository or a specific file name within a repository. In that case we have

simple scripts that collect either the complete set of blobs in a repository or a complete

set of blobs associated with a particular filename. In any case, we start with one or

more sha1 hashes as input. These hashes correspond to one or more blobs, which is

our seed list from which to start finding more files in the universal version history.

Next, we use WoC’s blob to old blob mapping recursively to find all ancestor blobs.

Similarly, we use WoC’s old blob to blob mapping recursively to find all descendant

blobs. For each blob, we use WoC’s blob to commit mapping to find all commits

containing any of the blobs that have been found. We now have all commits for all

revisions of the file across all source code repositories. The commit gives us the time,

author, pathname, and log message for that revision of the file. From the commit,

using WoC’s commit to project mapping (c2P), we find all projects which contain a

revision of the given file. Now we have the information needed to construct a link to

that revision of the file on the repository hosting platform (such as GitHub, Bitbucket,

SourceForge, etc). The final output of the tool shows the complete history of the file

with all ancestor and descendant revisions across all repositories. The history includes

the author of each revision, the date it was committed, the log message of the commit,

the link to the original source of the project of which that revision is a component if

the project is still publicly available and accessible, and a link to the specific revision

of the file on the hosting platform (if available).
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For each blob, we sort all of the commits for that blob in date order. We then

sort the blobs by the date of the earliest commit of that blob. The date we use is the

date in the Git commit. It is possible that the date in the Git commit is not correct.

We look for obvious discrepancies; for example, values of 0 or dates that are in the

future are clearly not correct. In addition, if we see a date that is before Git was

released in 2005, we flag it as suspicious. It is possible that the early date is correct,

as it may be a file that was migrated from a different source code control system such

as SVN or CVS. We also flag any dates prior to 1990 when CVS was introduced, as

it is somewhat unlikely that any date prior to the introduction of CVS is accurate.

We cannot guarantee that the date in the Git commit is correct, which we note in

the limitations section.

When identifying projects in the universal version history, we want to find distinct

projects. GitHub projects often have many forks, sometimes tens of thousands. Most

of those forks are not independent projects; many were only created for the purpose

of issuing pull requests to the original project. Showing tens of thousands of related

forks makes it far more difficult to find the useful information. Using the community

detection algorithm described by Mockus et al. [32], WoC maps each Git repository to

a central repository which is expected to represent the same project. This mapping in

WoC allows us to create a list of deforked projects. UVHistory displays the deforked

projects on the main page and then includes a link to a secondary page that contains

a list of all projects, including (possibly irrelevant) forks.

3.4.4 Output

Our final output contains:

• A list of all blobs in the universal version history. The list is sorted by date in

reverse chronological order. The blobs are named by the sha1 hash of the blob

as computed by Git.
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• For each blob, a list of all commits of which this blob is a part. The commits

are named by the sha1 hash of the commit as computed by Git. The commit

information includes the author, time of commit, and the commit log message.

• For each commit, a list of all of the projects where this commit was applied,

the full pathname of the file, and the URL linking to the file on the source code

hosting platform (note that the link may be dead if the project is no longer

publicly accessible).

3.5 Universal Version History

In this section, we present four research questions and the research methods used

to address each of the questions related to the construction of the universal version

history. Our study is designed to show the relevance of the problem presented and

also to evaluate the effectiveness of our proposed solution.

Our goal is to see if constructing a universal version history across repositories

and across hosting platforms can help solve the class of problems presented earlier in

this paper. We specifically look at two of the problems mentioned earlier: potential

license violations and security vulnerabilities. The other issues are similar and can

likely be solved in a similar way, but we leave those for future work.

RQ6: Can the declared license in an open source software be trusted?

The aim of this question is to see if it is common in real-world open source software

projects for code to be copied from other projects without the correct copyright and

license information being retained and without a clear link back to the original project

where the copyright and license information can be found. When code is copied, is

the correct license information copied along with it, or if not, is the correct license

readily available. We are specifically looking for real-world projects, not toy projects

or student assignments.

53



If we can trust that the license information provided in projects is correct, then

finding the universal version history is not necessary to be able to properly understand

and comply with the license terms. If, however, we find that there are frequent license

violations due to missing or incorrect license information in popular open source

projects, then we will conclude that it is worth our effort to find ways to mitigate

the problem. The specific problem we want to mitigate is the problem of copying

code without knowing or without having an easy way to find the correct license terms

for that code. We want to determine if there is real-world benefit in a tool to help

mitigate this problem.

Our research method to answer RQ6 was an exploratory study designed to see

the extent of the problem. We examined open source projects which have copied

code from popular open source projects to see if the correct copyright and license

information was propagated along with the copied code. We developed some tools to

select a set of projects that are likely to contain license problems. We then manually

inspected that subset.

RQ7: Can our UVHistory tool, by constructing a universal version his-

tory, help identify projects with missing copyright and license information

and help find the correct information for the given code?

It is important when reusing software to comply with the license terms. One

cannot comply with terms of which one is not aware. Reusing software without

knowing the correct license terms can cause someone to infringe intellectual property

without being aware of the infringement. We want to see if our tool can help

developers identify when correct license terms are missing and help them find the

correct license.

Most open source licenses require the copyright and license information to be

retained. Cases where projects copy code but omit the copyright and license

information is a clear violation of the license.

We used a case study to answer RQ7. We studied two cases where license

information was not properly propagated. The two case were selected from results of
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the study for RQ6. The case study method allowed us to look in depth at two specific

projects.

RQ8: Can our UVHistory tool, by constructing a universal version

history, help identify projects which are subject to security vulnerabilities

that have been found and fixed in another project but which still persist

unknowingly in other projects?

Previous research [82] [34] [64] has identified this as a real problem in popular

real-world projects. Due to the seriousness of this problem, a tool that could help

mitigate this problem would have value.

We answered RQ8 with another case study. This case study examined a case we

introduced section 1.4.1 as one of the motivating examples. Again, the case study

method allowed us to have an in-depth look at a project. This time, the project

studied contained a known security vulnerability propagated through code reuse.

RQ9: Is the performance of UVHistory such that it can run in

reasonable time on commodity hardware for source code files in typical

open source projects?

In order to have practical value, the tool needs to be able to produce results in

reasonable time on reasonably affordable hardware.

Our final RQ is addressed with a simple study to examine the performance of our

prototype tool on common projects using specific hardware.
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Chapter 4

Results

This chapter presents the results of the case study, the empirical study, and the

evaluation of the universal version history method and tool. The results highlight the

risks of copy-based code reuse and a tool to help mitigate those risks.

4.1 Case Study Results

In this section, we present the results of our case study involving four cases that

demonstrate some of the security problems caused by orphan vulnerabilities. The

four cases are four known security vulnerabilities that have now been fixed in popular

open source projects. Our case study looks at projects that copied vulnerable files

before the files were fixed in the original project from where they were copied. We

look at two vulnerabilities within the widely used cryptography library OpenSSL. The

first vulnerability is very recent and the second, heartbleed, is relatively old. We look

at one recent vulnerability in a Go language package supporting xz compression. We

look at one vulnerability that was fixed more than three years ago in the mature and

proven open source PNG [83] graphics library libpng, which is very widely copied.

Our case study looks at code written in different languages to show that our approach

is language agnostic. It works the same regardless of the language.
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We find tens of thousands of open source projects that contain files with known

vulnerabilities even though the vulnerabilities have been fixed in the original project

from where the vulnerable file was copied. Many of the vulnerable projects appear

to be inactive, but some are clearly still active. In some cases the fix is recent, and

project maintainers have not had much time to apply patches. In other cases the fix

is several years old, and yet many projects still contain the vulnerable code. Patches

we provided were only accepted by a small percentage of project maintainers.

4.1.1 Case 1: CVE-2021-3449 in OpenSSL

OpenSSL is a very widely used open source cryptography library implementing

Secure Socket Layer (SSL) and Transport Layer Security (TLS) [84]. Projects that

incorporate OpenSSL play a vital role in Internet security. This was made clearly

evident with the discovery in 2014 of the security vulnerability in OpenSSL known

as heartbleed [85]. OpenSSL is the leading cryptography library used for email and

website encryption and for software security in many other open source software

packages. In this case study, we look at two vulnerabilities in OpenSSL. First,

we look at the most recent (as of this writing) known vulnerability in OpenSSL.

This vulnerability, described in CVE-2021-3449 [86], allows a maliciously crafted

renegotiation ClientHello message to crash a TLS server. OpenSSL considers this

a high severity vulnerability [87]. It was fixed in March 2021. Since it was only

recently discovered and fixed, we might expect to find a number of projects that

still contain the vulnerable code. The second OpenSSL vulnerability we look at,

heartbleed, is discussed in the next section, 4.1.2.

The first OpenSSL vulnerability we look at, CVE-2021-3449, was introduced in

the file ssl/statem/extensions.c in commit c589c34e61 in January 2018 and fixed in

commit 02b1636fe3 in March 2021. According to the OpenSSL vulnerabilities list∗

”All OpenSSL 1.1.1 versions are affected by this issue. Users of these versions should

∗https://www.openssl.org/news/vulnerabilities.html
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upgrade to OpenSSL 1.1.1k.” Since the vulnerability only existed in a few versions of

OpenSSL, we expect to find a relatively small number of projects that use one of the

vulnerable versions.

Following the algorithm described in section 3.2.2, VDiOS finds 56 revisions of

extensions.c that contain the vulnerability. That is, there are 56 revisions between the

commit that introduced the vulnerability and the commit that fixed the vulnerability.

VDiOS finds three revisions of the file that contain the fix and are thus known to be

not vulnerable to this specific issue. Additionally, VDiOS finds the following:

• 1,614 projects contain one of the known vulnerable revisions of ssl/statem/extensions.c

in the most current revision of the project.

• 11 projects contain one of the known fixed revisions of ssl/statem/extensions.c

in the most current revision, meaning it used to be vulnerable, but now it is

fixed.

• 1,079 projects contain a revision of ssl/statem/extensions.c that is not in either

the list of vulnerable blobs or the list of fixed blobs, meaning that the project

contained a potentially vulnerable blob in the past, the blob has been modified

in the most current version, but we do not know if the modification fixed the

vulnerability.

• 253 projects used to contain a vulnerable version of the file, but the file has

since been removed.

For further investigation of these projects, we used WoC p2P mappings [32] to see

how many of these projects are forked. Deforking 1614 vulnerable projects resulted

into 132 projects. To see if they are active projects or not, we looked to see if they

have any commit in the past 6 and 18 months. We found that 23 of them have at

least one commit in the past 6 months, and 64 have at least one commit in the past

18 months. To have an idea about their impact in the OSS community, we looked
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at the number of stars [88] each of these projects have. We observed that four of

these projects have more than 10,000 stars and 10 have more than a thousand stars,

implying their wide impact in the OSS community.

4.1.2 Case 2: CVE-2014-0160 in OpenSSL

We next look at the OpenSSL heartbleed vulnerability. Heartbleed, described in

CVE-2014-0160 [89], is a very serious vulnerability [90] that was fixed in 2014. Due

to a bounds check error in the TLS heartbeat extension, the bug allows disclosure

of information that should be protected. Since this was a high profile serious

vulnerability that was fixed seven years ago, we expect not to find many, if any,

active projects still using code vulnerable to heartbleed. We use VDiOS to test this

hypothesis and then investigate the projects we find that still contain the heartbleed

vulnerability.

Heartbleed was introduced by commit 4817504d06 on December 31, 2011, in the

files ssl/t1 lib.c and ssl/dl both.c. The first release of OpenSSL with this vulnerability

was release 1.0.1 on March 14, 2012. The vulnerability was fixed two years later by

commit 731f431497f made on April 7, 2014, and released in release 1.0.1g on April 7,

2014. VDiOS first finds all revisions of the file ssl/t1 lib.c between the December 2011

commit that introduced the vulnerability and the commit in April 2014 that fixed the

vulnerability. It finds 90 vulnerable revisions of ssl/t1 lib.c. Following the procedure

described in section 3.2.2 above to find projects containing the vulnerability, we

discover the following results:

• 121 projects contain one of the known vulnerable revisions of ssl/t1 lib.c in the

most current revision of the project.

• 3,156 projects contain one of the known fixed revisions of ssl/t1 lib.c in the

most current revision, meaning it used to be vulnerable but now it is fixed.
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• 211 projects contain revisions of ssl/t1 lib.c that is not in either the list of

vulnerable blobs or the list of fixed blobs, meaning that the project contained a

potentially vulnerable blob in the past, the blob has been modified in the most

current version, but we do not know if the modification fixed the vulnerability.

Because of the very serious nature of heartbleed [91], we believe it is important

to investigate all 121 projects that contain a known vulnerable version of ssl/t1 lib.c.

We find the following information about these 121 projects:

• 110 of the projects are forks that were all forked between when the vulnerability

was released in 2012 and when it was fixed in 2014 and that have had no activity

on the project since before the vulnerability was fixed in 2014.

• Three of the projects are clones that were all cloned between when the

vulnerability was released in 2012 and when it was fixed in 2014 and that have

had no activity on the project since before the vulnerability was fixed in 2014.

• The remaining eight projects have had some activity (commits or issues) dated

2017 or later, well after the vulnerability was fixed. These projects are a

potential concern; therefore, we investigated these eight in more depth.

The 113 projects with no activity later than 2014 appear to be inactive projects.

Of course any publicly available project containing heartbleed has the potential to

be copied and reused, even if the project is not active. We find the remaining eight

projects, the ones with activity dated 2017 or later, to be more concerning since they

have been active since the vulnerability was fixed, yet they do not contain the fix. We

looked into those eight projects in more detail and found the following information:

• One project has several commits the year of our study (2021). This clearly

indicates that it is an active project and potentially concerning since it contains

the heartbleed code. Upon further investigation, we find that this project

contains tools for the purpose of an empirical study of bugs in real world C
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software. OpenSSL is included as one of the subjects of the study rather than

being linked into this project’s software. Thus, this project is not vulnerable to

heartbleed.

• Two related projects on GitHub have commits in 2018 and 2019, which would

seem to indicate that they are still active. One of them added a WhiteSource

Bolt† configuration file in 2019. The other is a fork of that project and updated

its Configure script‡ and Travis CI§ files in 2018. No other changes have been

made to either project since 2013, well before heartbleed was discovered and

fixed.

• Two related projects on GitHub have activity more recent than the 2014 fix.

One of the projects has two open issues from November 2018 where someone

asks questions that indicate they are actively using the project. The questions

were never answered, and there are no recent commits, which indicates that the

project is not active. But this does show that people could be using projects

that have been inactive for many years. Another project is a fork of a fork

of this project and has one commit in 2018. The commit is only a change in

whitespace in a README. There are no other commits since 2013.

• Two related projects on GitLab have changes in 2018 that only affect whitespace

in a README. One is a fork of the other. No substantive changes have been

made to either project since the 2014 fix of heartbleed.

• One project, which is not a fork, has a number of commits in 2017, indicating

that it has been active much more recently than the heartbleed fix. This GitHub

project has zero stars, zero forks, and only 27 commits.

Based on the above information, we conclude that heartbleed is virtually

eliminated, although not completely eliminated, from active open source software

†https://www.whitesourcesoftware.com/free-developer-tools/bolt/
‡https://www.gnu.org/software/autoconf/autoconf.html
§https://travis-ci.com/
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projects. However, a number of inactive projects that are still vulnerable to heartbleed

are still readily available online and thus could still be reused.

4.1.3 Case 3: CVE-2021-29482 in Package xz

Our next case looks at a vulnerability in a popular Go language package. Most of

our work to date has studied C language projects. VDiOS is completely independent

of the language. We wanted to look at a Go project to demonstrate the language

independence of VDiOS and WoC. The project at github.com/ulikunitz/xz is a Go

language package supporting xz compression. The project, which is still under

development, is subject to the vulnerability described by CVE-2021-29482 [92], which

is identified as high severity by the National Vulnerability Database. The vulnerability

was fixed in the file bits.go by commit 69c6093c7b on August 19, 2020, and released

in release v0.5.8.

VDiOS found 11 versions of the file that are potentially vulnerable and two

versions that are fixed. Using these two lists, VDiOS found 7,105 projects that are

known to contain a vulnerable version of bits.go in the most current revision and 185

projects that are known to contain a fixed version in the most current revision. Since

this is a very new (at the time of our study) vulnerability, it is not surprising that

there are only 185 projects containing a fixed version. Only one project was found

that contained the vulnerable file in the past but does not currently contain any of the

known vulnerable or known fixed versions. We looked into this one case and found

the only difference was that it used the DOS/Windows format with carriage return

and line feed (”\r\n”) at the end of each line instead of the Unix format with only

line feed (”\n”). There were 2,037 projects found that used to contain the vulnerable

file but that no longer contain the file at all.

To examine projects further, we used WoC project to deforked project (p2P)

mappings [32] to find out how many of the projects are not forked. Out of 7,105

vulnerable projects, this resulted in 758 unique projects that are not forked and
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contain this vulnerability. The numbers for not vulnerable projects are 185 and 82

respectively. To see how many of these deforked projects are actively maintained,

we looked for those that have at least one commit in the past 6 and past 18 months

(at the time of our study). We found that in vulnerable projects, 271 have at least

one commit in the past 6 months, and 472 have a commit in the past 18 months. In

the case of not vulnerable projects, these numbers are 68 for 6 months and 82 for

18 months. As we can see, the percentage of active projects in vulnerable projects

(36% & 62%) are significantly lower than in not vulnerable projects (83% & 100%),

which was intuitively expected. Nevertheless, not having a commit in a certain period

of time does not mean that the other projects are not being used, and so it is still

important to address the vulnerability issue. This already shows the significance of

the vulnerability being widely spread.

To investigate the impact of this vulnerability from a different standpoint, we

looked at the number of stars each of these projects has been given as a measure of

their popularity in OSS [88]. The results show that in vulnerable projects, at least

443 projects have more than one star, 273 more than 10, 101 more than 100, 31 more

than 1,000, and 10 projects have more than 10,000 stars. In not vulnerable projects,

the numbers are 71, 44, 23, 10 and 4 respectively.

The number of stars in projects that fixed the vulnerability is relatively higher than

vulnerable projects, which again is what we would intuitively expect. We have also

looked at the number of contributing authors in each project using WoC project to

author mappings (P2A), which maps the deforked projects to aliased author IDs [93].

Looking at the percentages, it seems that vulnerable projects have relatively fewer

developers involved.

4.1.4 Case 4: CVE-2017-12652 in libpng

Libpng [94] is a very popular open source graphics library for manipulating PNG

(Portable Network Graphics) image files. It is an old library, dating back to 1995,
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and is still actively maintained. Because of its popularity and its very long history,

we expect to find many copies in other open source projects, making it a strong case

for our study. The libpng source code [95] is hosted on SourceForge [96] and mirrored

on GitHub [97].

Libpng was the first case we studied. Lessons learned from this case were applied

to our study of the other cases. Improvements to VDiOS, as described later in this

section, were applied based on those lessons learned.

This case specifically looks at the libpng file pngpread.c. That file is the subject

of the vulnerability described by CVE-2017-12652 [98], which is labeled as a critical

vulnerability in the National Vulnerability Database (NVD) [66]. The vulnerability

was fixed in August of 2017 in release 1.6.32. This fix is in commit 347538e, and the

blob for pngpread.c at that revision is 45b23a7.

Using WoC’s blob to old blob (b2ob) mapping recursively, VDiOS finds 951 old

versions of the file pngpread.c. The old versions are the potentially vulnerable

versions. Using WoC’s old blob to blob (ob2b) mapping, VDiOS finds 964 new

versions of that file. The new versions presumably all contain the fix. Next, VDiOS

looks at each potentially vulnerable blob and uses WoC’s blob to commit mapping to

find the commits. Once it has the commits, it uses WoC’s commit to project mapping

to find all of the projects containing the discovered commits. This gives us a list of

all projects that have ever contained one of the potentially vulnerable versions of the

file pngpread.c. Finally, VDiOS looks at the head commit of each project to see if

it contains a version of the file from the potentially vulnerable list, the presumably

fixed list, or neither.

The results are as follows:

• 63,441 projects contain one of the potentially vulnerable blobs in the most

current revision, even though it was fixed in the original file more than three

years ago.
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• 458 projects contain one of the presumably fixed blobs in the most current

revision, meaning it used to be vulnerable but now it is no longer vulnerable.

• 20,274 projects do not contain blobs from either of the two previous lists,

meaning that the project contained a potentially vulnerable blob in the past, the

blob has been modified in the most current version, but we do not know if the

modification fixed the vulnerability. We manually inspected the first 10 of those

projects and found that two out of the 10 projects still contain the vulnerability.

In those two cases, the file was modified, but the specific vulnerability was not

fixed. In the remaining eight cases, the vulnerability was fixed.

• 28,376 projects used to contain a vulnerable version of the file, but the file has

since been removed.

We see that over sixty thousand projects contain a vulnerable version of the

file. We selected a subset of those projects to analyze in more detail. To select

the subset, we first selected projects that have a commit within the last 18 months

to eliminate long dormant projects. Next, we selected non-forked projects to get a

list of independent projects. Finally, when one commit went to multiple projects,

we selected the first one that VDiOS found and eliminated the remaining duplicates.

This process of elimination leaves us with 1,457 projects. From those 1,457 projects,

we randomly selected 88 projects to analyze in more detail. In looking at these

projects, we find that they copy the entire contents of libpng, not just selected files.

Our first step is to verify that the 88 projects do indeed contain the vulnerable

code. We manually inspected all of the projects and found six false positives. There

were four projects that had deleted the vulnerable file and two projects that had fixed

the vulnerable file. We removed those six projects from further analysis, leaving 82

projects. We investigated these six cases to understand why VDiOS produced false

positives. In all six cases the reason was timing. We ran VDiOS to produce the

results in early February 2021 and analyzed the results over the next two months.

WoC is continuously updated but will always be a little bit behind what is live on

65



the source code repository hosting platforms. We ran VDiOS on version S of WoC

which was updated in August 2020. We found in those six cases that the vulnerable

files had been fixed or removed after the WoC version that VDiOS used to produce

the reports and before we verified the results in April 2021. We conclude that VDiOS

produced the correct output, but the continuously changing open source projects will

be different from our reports to the extent that changes are made after the most recent

WoC update. As a result of this discovery, we modified VDiOS to use the APIs of the

hosting platforms to get the most current revision of the file. The results presented

in this case are based on the original version of VDiOS; this new enhancement to

VDiOS is used for the rest of the cases.

For projects hosted on GitHub, we also verified that GitHub’s Dependabot [21]

did not find the vulnerability. While dependabot has similar goals to VDiOS

in finding vulnerable dependencies in the software supply chain, it uses a very

different mechanism. Dependabot requires that a repository define dependencies in

a supported package ecosystem while VDiOS looks for file level code duplication.

As expected, none of the projects we found with a vulnerable version of libpng

were identified by Dependabot. Several of the projects had other issues identified

by Dependabot, but not the libpng issue we are investigating. This shows that

Dependabot is enabled for these projects. Clearly VDiOS finds different supply chain

dependency vulnerabilities than GitHub’s Dependabot.

Finally, we wanted to find out if the maintainers of the projects that contain

known vulnerable files are willing to accept a patch to fix the vulnerability. For the

82 vulnerable projects, we produced a patch and sent a message to the maintainers

through a pull request, an issue, or an email. We waited up to two weeks for responses.

Seven project maintainers accepted our pull request with the patch. One project

maintainer updated to a newer version of libpng because of our contact. Two project

maintainers responded and said they would continue using the existing (vulnerable)

code. We received no responses about the remaining projects.
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Aside from what we found through these 82 projects, we wanted to have some

overall statistics on activity and popularity measures of vulnerable and not vulnerable

projects as we had in previous cases. Following the same procedures, we found that

the 63,441 vulnerable projects reduce to 9,680 deforked projects from which 660 have

at least one commit in the past 6 months and 2095 in the past 18 months. Other

than that, there are at least 25 projects with more than 10,000 stars and 131 projects

with more than 1,000 stars which attest the importance of such vulnerabilities.

4.2 Empirical Study Results

The widespread copying of open source software in software projects has exposed them

to vulnerabilities. Dependency tracking tools have been developed to address this

issue, but they primarily rely on package manager metadata. However, a significant

problem arises when open source developers manually copy code to other repositories

without a clear link to the origin, leading to what we term ”orphan vulnerabilities.”

To assess the scope of this problem, we conducted a large-scale study. We created

the VCAnalyzer tool to investigate vulnerabilities introduced through the manual

copying. Analyzing 3,615 vulnerable files from the CVEfixes dataset, we identified

over three million orphan vulnerabilities in over seven hundred thousand open source

projects.

Our findings are striking: 83.4% of vulnerable files were copied at least once, with

59.3% containing C source code. Only 1.3% of these vulnerabilities were remediated,

taking an average of 469 days. For active projects, more than half required over three

years to address.

These results highlight the challenge of tracking orphan vulnerabilities, necessi-

tating improvements in dependency identification within software supply chain tools.

To foster collaborative efforts in addressing this issue, we have made VCAnalyzer and

our dataset publicly accessible.
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The rest of this section addresses our four research questions concerning orphan

vulnerabilities in open source software.

4.2.1 RQ1: Prevalence of Orphan Vulnerabilities

Searching for the prevalence of orphan vulnerabilities in open source software, we

observed that 83.3% of vulnerable files in our CVEfixes dataset were replicated in

a staggering 3,044,644 instances. Interestingly, 601 initial vulnerabilities remained

unreplicated, leaving more than a thousand isolated vulnerabilities on average for

each copied one. A noteworthy finding was that 95.4% of copied vulnerable files

shared directory paths with the original ones, indicating that orphan vulnerabilities

typically stem from the wholesale import of dependencies into a project’s repository.

The majority of copied original vulnerable files were written in C (59.3%), with

C++ accounting for 10.2%. This can be attributed to the prevalent use of code

copying in C and C++ projects, as opposed to package managers like Conan [99].

Vulnerable C++ files were less frequently copied, making up only 1.3% of copied files.

Similarly, JavaScript vulnerabilities represented 5.7% of the originals but surged to

24.3% among orphans due to the npm package manager’s influence.

We also found instances where dependencies and their metadata were committed

to repositories, rather than following the recommended package manager approach.

This practice accounted for 17% of C++ files, 36% of Go files, 67% of JavaScript files,

66% of JSON files, 47% of PHP files, 9% of Ruby files, and 53% of Swift files. Most

other languages had less than 5% of files introduced through package managers.

C, PHP, and C++ files comprised the majority of both original vulnerable files

and copied files. However, PHP and C++ files were underrepresented among copied

files at 6.4% and 1.3%, respectively.

While the average number of times a vulnerability was copied was 1,010, there was

significant variance, with some vulnerabilities copied only once (10.1%) and others

more than a thousand times (12.6%).
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The most frequently copied vulnerabilities were linked to npm package manager

usage, with CVE-2021-32640 copied a staggering 112,297 times. Excluding npm,

the top 20 most commonly copied vulnerabilities included cross-site request forgery

issues in Fat Free CRM, PHP software vulnerabilities, C vulnerabilities in nanopb,

and JavaScript vulnerabilities in Moment.js.

It is worth noting that many of the top 20 copied orphan vulnerabilities were not

found in libraries, making them challenging to detect with supply chain tools focusing

solely on third-party library dependencies.

4.2.2 RQ2: Characteristics of Projects that Copy Vulnera-

bilities

In examining the characteristics of projects that copy vulnerabilities, we aim to

uncover patterns and trends that shed light on how vulnerabilities propagate within

software development ecosystems. By analyzing these distinctive traits, we can

gain valuable insights into the dynamics of code reuse and potential strategies for

enhancing software security.

In the CVEfixes dataset, consisting of 1,114 open-source projects, 800 of them

(71.8%) had orphan vulnerabilities, resulting in the dissemination of vulnerable files

to 719,131 distinct projects within World of Code. While 58.3% of these projects

contained a solitary orphan vulnerability, and a staggering 97.5% had 10 or fewer

such vulnerabilities, a subset of 9,428 projects (1.3%) harbored 100 or more copied

vulnerable files, with a maximum of 806. Notably, seven of the top ten projects

with the highest counts of vulnerable copies were closely associated with ”linux” or

”kernel” in their project names, suggesting their roots in the Linux kernel, which had

the most vulnerable files in our CVEfixes dataset.

To assess project activity, we considered multiple metrics, including active project

lifespan, commit counts, authorship, and GitHub stars. Commit activity exhibited

significant variability, ranging from a mere one commit to an impressive 36 million
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commits. Predominantly, projects featured low commit activity levels, with 94.3% of

them registering 100 or fewer commits, and 61.3% having 10 or fewer. Furthermore,

99% of projects had 10 or fewer commit authors, with 71% having only one. The

duration of active months spanned a broad spectrum, ranging from one month to an

impressive 428 months (equivalent to 35 years). Some well-known projects like Emacs,

FreeBSD, gcc, Kerberos, and Python boasted more than 30 years of historical data.

GitHub repositories were prevalent among our projects, with 98.5% of them having

a presence on GitHub. However, GitHub stars were less ubiquitous, as 83.3% of

GitHub-hosted projects had none, while 10.4% had garnered a solitary star, with a

handful amassing more.

Notably, most projects housing orphan vulnerabilities lacked documented GitHub

security policies (as indicated by the absence of a SECURITY.md file). Only 1.7% of

these projects included such policies.

We further curated a subset of 2,021 projects with high levels of activity, defined

by having at least 100 GitHub stars. These projects exhibited an average of 6.28

copied vulnerabilities, compared to 4.23 for the entire dataset. Despite having nearly

50% more copied vulnerable files on average, active projects were more likely to

have published a security policy, with 11.6% of them featuring a SECURITY.md file,

compared to 1.7% across all projects. Only 0.013% of active projects had fewer than

100 commits.

4.2.3 RQ3: Orphan Vulnerabilities that are Fixed

Looking into orphan vulnerabilities that are fixes, our analysis reveals that out of

the three million copied files within the World of Code dataset, a mere 100,889 files

(3.3%) witnessed the substitution of the vulnerable file with a corrected version from

the original project at a subsequent point in time. Furthermore, 68,760 copied files

(2.3%) underwent modifications from their original vulnerable state, yet the nature of

these alterations remains uncertain, as they may have been intended for vulnerability
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remediation or other purposes. Notably, the bulk of the copied files, totaling 2,875,018

(94.4%), remained identical to the original vulnerable file throughout the history of

the projects that adopted them.

Turning our focus to fixed vulnerabilities, we identified them in 26,801 (3.7%) out

of the 719,204 projects in the dataset. Interestingly, more than half of the projects

that addressed one vulnerability also resolved all their vulnerabilities. However, it is

essential to note that among the 14,276 projects that rectified all their vulnerabilities,

a significant majority (79%) had just one vulnerability to address. Conversely, only

a mere 1.6% of projects within the World of Code that featured a single copied

vulnerable file succeeded in mitigating that specific vulnerability.

4.2.4 RQ4: Projects that Fix Orphan Vulnerabilities

Our research delved into the correlation between various project characteristics and

the percentage of fixed vulnerabilities. We examined several project attributes,

including project language, vulnerable file language, number of commits, contributors,

community size, core contributors, active months, and the number of stars.

Regarding the project language, we analyzed the primary language identified

by World of Code using heuristic methods. Vulnerabilities stemmed from projects

written in 14 different programming languages, with not all projects having a

designated primary language. A detailed breakdown of the percentages of fixed,

not fixed, and unknown status vulnerabilities for each project language can be found

in Table 4.1. Notably, the majority of copied vulnerabilities across most languages

remained unfixed, with exceptions like Rust, Go, and SQL, where 36.3 17.1%, and

10.9% of copied vulnerabilities were rectified, respectively.

We further scrutinized how various project metrics influenced the percentage

of fixed and unfixed orphan vulnerabilities. We considered how these percentages

changed concerning the growth of metrics such as the number of commits, active

months, community size, core members, forks, and GitHub stars. Generally, there
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Table 4.1: Percentage of copied vulnerabilities with status fixed, not fixed, and
unknown for each project language

Project Language Not Fixed Fixed Unknown

98.9 0.6 0.5
C/C++ 92.9 4.1 3.0
Fortran 96.4 2.9 0.7
Go 79.4 17.1 3.5
Java 95.8 2.8 1.4
JavaScript 97.9 1.6 0.5
Lua 83.5 9.7 6.8
PHP 95.4 2.5 2.1
Perl 95.4 3.3 1.3
Python 90.1 9.1 0.8
Ruby 97.4 2.1 0.5
Rust 62.3 35.3 2.5
Sql 88.1 10.9 1.0
Swift 97.4 1.7 0.9
TypeScript 94.4 0.6 5.0
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was a trend of reduced unfixed vulnerabilities as these project metrics increased,

indicating that larger and more actively maintained projects were more inclined to

address copied vulnerabilities. Nonetheless, it is essential to note that even in larger

projects, a significant number of copied vulnerabilities remained unresolved.

The most pronounced trends were observed in the number of active months

and GitHub stars, suggesting that projects with extended lifespans and substantial

popularity were more likely to fix copied vulnerabilities.

Additionally, we examined whether vulnerabilities copied through package man-

agers exhibited a higher likelihood of being fixed. Surprisingly, we found no consistent

and clear trend across different programming languages.

Lastly, we investigated the percentage of fixed orphan vulnerabilities in large

projects, focusing on a subset with at least 100 GitHub stars. This metric was

chosen to mitigate potential biases from other metrics, such as commit count, being

influenced by forking. Table 4.2 provides insights into the percentage of fixed, not

fixed, and unknown status vulnerabilities for the top 10 file suffixes in large projects.

Although a higher percentage of orphan vulnerabilities were fixed in these projects,

a notable proportion remained unresolved, highlighting the persistence of security

challenges even in large and popular open-source endeavors.

4.2.5 RQ5: Survival of orphan vulnerabilities

We conducted an analysis to determine the timeframe within which orphan vulnera-

bilities were addressed. To calculate this, we computed the time difference between

the first fixing commit and either the initial vulnerability introduction commit or the

original vulnerability’s resolution time, depending on which event occurred later.

Across all projects, our findings revealed that 15.6% of copied vulnerabilities

exhibited a negative time delta, indicating that the orphan vulnerability was rectified

before its resolution in the original project. In contrast, 84.3% of the copied

vulnerabilities showed a positive time delta, reflecting fixes that occurred later.
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Table 4.2: Percentage of copied vulnerabilities with status fixed, not fixed, and
unknown for each file ending for active projects.

File Suffix Not Fixed Fixed Unknown

.c 30.3 61.6 8.1

.cc 75.2 2.2 22.6

.cpp 42.5 41.5 16.0

.h 36.9 56.0 7.1

.js 40.0 53.1 6.9

.json 31.2 6.2 31.2

.php 29.4 49.2 21.4

.py 10.2 79.5 10.2

.rb 67.5 27.3 5.2
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The mean duration required to remediate an orphan vulnerability was 459 days.

Notably, in 15% of cases, orphan vulnerabilities were fixed within 0 to 1 days,

suggesting potential automated update interventions. While half of the orphan

vulnerabilities were addressed in less than 80 days, 25% of them lingered unresolved

for over 560 days. Surprisingly, we observed that copied vulnerabilities likely

introduced through package managers did not exhibit a trend toward quicker fixes

(i.e., less than a day).

Furthermore, we investigated the duration for which copied vulnerabilities

persisted in larger projects, with the expectation that more prominent and active

projects would resolve vulnerabilities more swiftly. In projects boasting at least 100

GitHub stars, 75% of orphan vulnerabilities endured within the project for more

than 426 days. Half of these orphan vulnerabilities remained unresolved for over

three years.

4.3 UVHistory Evaluation

The free exchange of code among open source projects poses challenges for code

provenance, crucial for cybersecurity and license compliance. To address these

challenges, we developed UVHistory, a tool linking code pieces to all their project

homes and version histories, forming a ”universal version history.” In this section, we

explore how UVHistory aids developers in tracking code origins, evolution, authors,

and modifications, and evaluate its effectiveness in identifying license non-compliance

and unfixed vulnerabilities in active and popular projects. We evaluate our method

and tool by answering each of the four research questions.

4.3.1 RQ6: Can the declared license be trusted?

To answer our first research question, we searched for cases where code was copied

from one project to another, but the copyright and license information was not copied.
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We were not looking for projects that used package managers or linked to external

libraries, but only cases of code cloned from one project and committed into the

repository of another project.

We selected a small subset of projects to investigate in more detail. We randomly

selected 100 source code projects from GitHub which include a top-level file named

LICENSE.txt containing a license that requires copies to retain the copyright notice,

had no reference to copyright or license information in the individual source code files,

and had more than 1,000 stars. We chose projects with a top-level LICENSE.txt file

because it is common for projects to put the license information in a single file in the

top-level directory of a repository and not duplicate the license in every source code

file. LICENSE.txt is one common filename used for the license file. When the license

information is not included in every source code file, it is easy for a developer to copy

a copyrighted source code file without copying the relevant license information. We

limited our selection to repositories with more than 1,000 stars so that we would find

popular projects [88] that are likely to have files that are copied into other projects.

The selected projects were composed of projects in a variety of languages and using

a variety of licenses.

For each of the 100 projects, we used our UVHistory tool to trace the history of

one of the files in the project to find other projects which had copied code from the

original project. We then checked those other projects to see if the copyright and

license information had been propagated to the new project. In the few cases where

there were more than 500 clones of a project, we limited our search to the first 500.

Because of the manual work involved in investigating each license, we had to limit

the scope. We looked at 100 original projects and up to 500 clones of each of those

100 original projects.

Our procedure for finding out if the projects containing cloned code also contained

the proper license was as follows: First, we used UVHistory to find projects containing

copies of the code in question. Next, we used a tool we developed (also layered on top

of World of Code) to find all licenses used in a project. The tool used the winnowing
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algorithm [100] to find the most similar license from among 1862 licenses provided

by spdx¶ for each blob in a project. The winnowing algorithm relies on extracting

a collection of signatures from text and matching them among documents (blobs in

the project and blobs representing licenses). We compared the known license in the

original project to the licenses found by our tool to see if there was a match. If there

was an exact match, then clearly the license information was correctly propagated

with the code. If there was not a match, we manually inspected the project to make

sure that, in fact, the correct license was not included. We also checked to see if

the project was still publicly available, as World of Code will still have information

about removed projects, but we only care about projects that are currently publicly

available. If neither our tool nor our manual inspection found a match, then we

conclude that the correct license information is not properly included.

In 76 of the 100 projects, we found at least one case where code from that project

had been cloned to another project. In 54 of the 100 projects, we found at least one

case where another project had copied the code but had not copied the copyright and

license information and did not include an obvious link back to the original project

where the copyright and license information could be found. In total, we found 3,431

projects which had cloned code from one of the original 100 projects (Note that our

500 project limit reduced that total). We found that 1,132 of those projects did not

properly retain the copyright and license information.

The answer to RQ6 is clearly no, the declared license cannot always be trusted.

License violations caused by license omission are common in real world projects since

we found a high percentage of popular projects where code is copied but the license

and copyright information are not retained (as required by the license), and there

is no link from the copied project back to the original project where the license can

be found. These non-compliant projects are publicly available, which means that

someone might very well copy and use the code without being aware that they are

violating the license terms.

¶https://spdx.org/licenses
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The answer to RQ6 suggests that future work involving a large scale empirical

study concerning license omissions in cloned code would be valuable.

4.3.2 RQ7: Can UVHistory help with license compliance

issues?

Based on the answer to RQ7, someone who wants to reuse code from one of these

non-compliant projects would have no easy way to know the license terms that must

be followed unless they obtained some additional information. Our second research

question considers whether our UVHistory tool can provide the additional information

necessary to ensure compliance. To answer this question, we conduct a case study

with two cases looking in detail at specific projects chosen from the ones identified in

the section above.

The first project chosen was AIOHTTP‖, an asynchronous HTTP client/server

framework. We chose AIOHTTP because it has over 12,000 stars on GitHub,

indicating it is a very popular project likely to be copied, and because it has the

Apache license which is a very common license which requires the copyright notice to

be retained in all copies. We have already discovered, in answering RQ7 above, that

there are projects which reuse AIOHTTP without following the license terms that

require attribution. To answer RQ7, we want to find out if UVHistory can confirm

that proper license terms are followed or, if not followed, find the correct license

for the project. We start with projects that we know, from our study of RQ6, do

not comply with the license requirement to include the copyright notice and do not

provide a clear link to the original project that contains the correct license terms.

There are many cases of projects that use AIOHTTP without retaining the copyright

notice as required. We pick just one, Hackathon-Torrent∗∗, to show that UVHistory is

able to identify the correct license and copyright notice that should be included with

‖github.com/aio-libs/aiohttp
∗∗github.com/AdoenLunnae/Hackathon-Torrent/
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any reuse of this project. Running UVHistory on a source code file in the Hackathon-

Torrent project, we find the AIOHTTP project as the project in the universal version

history with the earliest date. Following the link produced by the tool takes us to the

AIOHTTP project on GitHub where the license and copyright information is very

clearly available. This means that someone wishing to reuse the Hackathon-Torrent

project could, by looking at the universal version history produced by UVHistory, find

the correct license and copyright information that is missing from Hackathon-Torrent.

The second project chosen was VirtualXposed††. We chose this project because

it is widely copied and because it has a commercial license. The commercial license

is particularly problematic when copied into open source projects, especially when

the license information is not propagated with the copy. We traced the code

from the VirtualXposed project to its origin, which is VirtualApp‡‡. VirtualApp’s

README is very clear that in order to use this software you must purchase a license.

However, VirtualXposed includes the GPL license in its LICENSE.txt file, which

would make it appear that it is available under GPL, but that is not completely

correct since it also includes commercially licensed code. VirtualXposed has more

than 15,000 stars on GitHub and more than 2,000 forks, indicating that it is a

widely used and copied project. Following the history of the project produced by

UVHistory, we find several copies of this code that include an open source license

such as Apache or no license at all. Without a tool like UVHistory, there would

be no way to know that these copies of VirtualApp are restricted by a commercial

license. Some examples of projects that do not propagate the commercial license

follow. We only list a few examples; there are many more than what we have

listed here. VirtualDump (github.com/LiveSalton/VirtualDump) contains copies of

some of the code that originated in VirtualApp, but it does not include any license

information or any link back to the original VirtualApp project. YCVaHelpTool

(github.com/yangchong211/YCVaHelpTool), which also uses code from VirtualApp,

††github.com/android-hacker/VirtualXposed
‡‡github.com/asLody/VirtualApp
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includes the Apache license in a file named LICENSE. There is no mention of

the VirtalApp or the commercial license, leaving a developer wishing to reuse

the code assuming that it is available through the Apache license. Following the

universal version history to the origin again leads to the correct license and copyright

information.

The answer to RQ7 is yes, the universal version history can help identify missing

license information and find the original project containing the correct license

information. We demonstrated that our UVHistory tool can effectively find the

original project, allowing developers wishing to reuse code to be able to find the

correct license information.

We contacted the project maintainers of these projects to report license issues.

4.3.3 RQ8: Can UVHistory help identify projects with

security vulnerabilities?

To answer RQ8, we follow a similar procedure as for RQ7, except our case study

for RQ8 looks at projects with known security vulnerabilities rather than potential

license violations.

In section 1.4.1, we used a security vulnerability in a jpeg compression library as

a motivating example for this work. That case was particularly challenging because

the fix for the vulnerability was not in the original project from where the code came,

but rather in a project that had reused the vulnerable code and then fixed it. Thus

finding the origin is not enough, we also need to look at other projects in the history.

The specific example we look at, Entropia Engine++()github.com/Spartan/eepp),

is a cross-platform game and application development framework. With recent

commits and a number of stars, it appears to be a reasonably active and popular

project. It reuses the vulnerable file jpgd.cpp. The header comment in that

file references the jpeg-compressor project from where the code was copied. A

developer wishing to reuse Entropia Engine++ could easily know from where it
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was copied. However, the CVE identifying the vulnerability lists the Android

System UI (source.android.com/security/bulletin/2017-07-01#system-ui) where the

vulnerability was fixed. Therefore, there is no clear way for the developer reusing it

to know that it, in fact, contains the vulnerable version of jpgd.cpp. This is where

UVHistory proves its value. By finding the universal version history using UVHistory,

we are able to see not only the original jpeg-compressor project, but also other projects

which reuse it, including Android. Searching the universal version history for common

strings like “CVE” or “vulnerability” finds hints about potential problems. In this

example, we find two hits when searching for “vulnerabil”: “38889eb Fix series of

JPEG vulnerabilities by xxxxx” and “890381c Fix security vulnerability by xxxxx”

(author names redacted for privacy), both from the Android project. This allows

a developer wishing to reuse Entropia Engine++ to find the potential vulnerability

CVE-2017-0700 by searching the universal version history. Commit 38889eb fixes this

vulnerability.

We contacted the project maintainers of the project with the cloned vulnerability

to let them know about the issue. The issue was fixed on June 28, 2022 by updating

to a new version of jpeg-compressor, so the project is no longer vulnerable.

4.3.4 RQ9: Is the UVHistory prototype feasible?

Our final research question considers performance. We want to understand if it is

feasible to effectively identify code history across repositories on such a large scale.

Our tests were performed on a machine with Intel(R) Xeon(R) Gold 6148 CPUs

running at 2.40GHz. We limited our program to 16 threads running in parallel to

limit the load on the machine which is in heavy use by multiple users. As a prototype

tool, UVhistory is not optimized for performance. Increased parallelism and other

enhancements would improve performance.

By leveraging the World of Code infrastructure, which has already curated the

data and stored useful information in a database which can be efficiently searched,
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we are able to produce results relatively quickly. We looked at the timing on the

100 cases selected for RQ6. Our timing results varied greatly based on how many

different projects contain a cloned version of the file in question. Most of the projects

in our 100 cases had less than 500 clones. The elapsed time for a case with 187

cloned projects was nine minutes. The worst case, which found clones in well over

10,000 projects, took just under three hours. Thus we conclude for RQ9 that, yes,

UVHistory is able to finish in practical time.

4.3.5 Evaluation of Existing Tools

The goal of our tool is similar to that of Software Composition Analysis (SCA) tools,

but our methods are different and therefore help developers find issues not found by

SCA tools. SCA tools identify the open source software in a codebase in order to

find security, license compliance, and code quality issues. In this section, we identify

existing tools, describe a test case we set up to test those tools, and then present the

results of the test.

Current open source SCA tools that detect license compliance issues look at

licenses that are explicitly declared in a project being reused through code clones

or through a package manager. They trust the declared license in a project or source

code file. What they fail to find are cases where code is copied from project to

project multiple times, and sometimes modified, without the license information also

being copied. The history is lost, making it impossible to find the original license.

Commercial tools are harder to evaluate. Some tools claim to find clones from a large

collection of open source software, but we do not have access to that collection and

cannot evaluate its completeness. Most tools appear to trust the declared license

without searching for the origin of the cloned code. We tested some of those tools,

both open source and commercial, and present the results below.

Similarly, with vulnerabilities, current open source tools fail to trace the history

as a file is modified and copied across repositories, and therefore often miss vulnerable
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code that has been copied from a known vulnerable project to a different project. Our

research shows that cases like this are common and that our tool can help identify

these cases. Again, commercial tools are harder to evaluate. Most appear to have the

same limitations. We tested several using our example project containing a cloned

vulnerability.

We created a small test case example project where we built a very simple

HTTP client and server using code cloned from a vulnerable version of aiohttp

(github.com/aio-libs/aiohttp) (a project which we identified when we collected data

for RQ6). We cloned only the directory that contains the source code, but we did

not clone the top-level directory, which contains the License.txt file. We added an

MIT license for our example project. Our project cloned v3.7.3 of aiohttp, which is

subject to the vulnerability described in CVE-2021-21330. Anyone wanting to reuse

our project would assume everything in the repository is available under the MIT

license. It is not immediately clear that parts of the project are actually subject to

a different license. Additionally, the project contains a known vulnerability, but our

project is not listed in any CVE entry. This example project mimics real-world cases

that we found in many open source repositories.

Popular free dependency checker tools such as GitHub Dependency Graph [57],

Dependabot [21], Google Open Source Insights [58], and OWASP Dependency-

Check [59] rely on supported package ecosystems that use a supported file format

because they rely on the packaging information to find the dependencies. This means

that languages like C and C++, which don’t have a standard package management

system, are not well supported by these kinds of tools. Even projects using languages

that have popular package management systems sometimes copy and commit the

code into their own repositories rather than using the package management system.

In our tests using our example project, none of these four tools detected the license

or security issue. This is as expected since our example uses cloned code rather than

a package manager.
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We next tested two commercial SCA tools, which we refer to as Tool A

and Tool B. We chose those two because they were listed in ”The Forrester

Wave” (forrester.com/policies/forrester-wave-methodology/) 2021 Q3 Report as hav-

ing strong market presence, and they have free downloadable trials available. We did

not look at commercial tools that do not provide a free download of a trial version.

While it is harder to know the exact capabilities of closed source tools, the public

documentation and trial versions give us good insight.

Tool A traditionally relied on package manager information to find license

compliance issues. They recently announced support for “vendored code” (what

we in our introduction call “clone-and-own or vendoring”). We tried out their free

version (which supports license compliance but not vulnerability management) on

our example project. Tool A did not detect the missing license information from the

cloned file we inserted.

Tool B provides tools which address both security vulnerabilities and license issues.

Tool B’s free version does not support license compliance, so we signed up for their 14-

day free trial, which supports both vulnerability management and license compliance.

We ran the test with our example project described above, and Tool B did not report

the license violation or the security vulnerability.

Our tool’s purpose is to help developers find the provenance (history and chain of

custody) of a file, which can help them find security and license issues. We make no

claim that our tool competes with these very impressive SCA tools. We only claim

that it can, in some specific cases, help a developer find an issue that SCA tools miss.

4.4 Limitations

4.4.1 Infrastructure

We rely of the World of Code infrastructure, which contains a relatively complete

collection of open source software. But the collection is not complete, with some
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projects missing and a several month delay between the versions of World of Code

when new projects with vulnerabilities may be created. Our tools will miss any code

that is not included in World of Code. Only increasing open source coverage for

World of Code would address this limitation.

It is important to note that some vulnerabilities are never discovered or fixed,

or not reported in public vulnerability databases. Our study looks at known

vulnerabilities, and thus does not consider these vulnerabilities that have not yet

been discovered.

Our tools trust the timestamp and author information in the Git commit.

There are occasional cases where that information is not correct. Flint et al. [101]

demonstrated that while timestamps are usually accurate, there are unusual cases

where the timestamp is not correct. We used the reported suggestions and additional

techniques, like identifying unreasonable (empty, too old, or too new) and inconsistent

(parent commit occurring after the child commit) time stamps to weed out some of

the problematic commits.

The first commit may have borrowed from a source that is not in World of Code,

in which case our tools will not find the true origin, but rather find the first place

where it was committed into an open source repository.

We are specifically interested in cases where files are copied from one project to

be reused in another unrelated project. We do not want to include forks that are

only created to submit pull requests, or cases of re-appropriation of entire projects as

described by Lopes et al. [102]. Our tools use World of Code’s commit to deforked

project (c2P) mapping. This mapping uses the community detection algorithm

described by Mockus et al. [32] to find unrelated repositories, and it excludes most

forks and complete copies of projects. If the c2P mapping returns related projects, we

will over-count duplicates. We believe this to be a small number of projects relative

to the 173 million projects contained in World of Code.
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4.4.2 Methods

Our findings about the scope and age of orphan vulnerabilities is limited by the

relatively small sample of vulnerabilities explored. We hope that by highlighting the

scope and seriousness of the problem with our study, we will spur improvements and

wider studies of vulnerabilities in the future.

If a source code file has been identified as containing a security vulnerability, the

project using that file might be subject to the vulnerability. However, the project

might not be using the vulnerable file in a vulnerable way. Our tools can help identify

if a vulnerable file is included in a project, but cannot identify whether it is used in

a vulnerable way. It is important for project maintainers to understand if a project

contains a vulnerable file, even if it does not use the code in a vulnerable way. A

developer may later make a change that uses the code in a vulnerable way, thus

unknowingly making the project vulnerable. Also, an important part of our study is

to help developers who wish to copy code. It is valuable to know that a vulnerable

file exists in a project one wants to copy, even if the project does not currently use

the file in a vulnerable way.

We rely on heuristics to determine if a vulnerable file was installed by a package

manager or by manual copying of files. Errors in these heuristics may result in an

undercount or overcount of orphan vulnerabilities.

We use GitHub stars as one metric to try to find active projects and eliminate

many useless projects. GitHub stars is not a perfect measure but is useful in many

cases [103].

4.4.3 Tools

Our tools look for exact matches at the file level for the set of code versions between

the versions that introduced and fixed the reference code. Using hash-based matching

of files allows us to scale to the entire World of Code. Code fragments copied

from within a file may not be detected. It will also not detected if a developer
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copies a file and modifies it before committing to the new repository. First, this

provides only a conservative estimate of vulnerable files, as minor modifications to

vulnerable (or fixed) files may not be detected. Second, it is fairly straightforward to

enhance the tools to look for snippets, patches, or more abstract representations of

the vulnerability.

If we know when a vulnerability was introduced, the tools have the ability to

look at only revisions between the introduction and fix of the vulnerability. If we

don’t know when the vulnerability was introduced, we consider all prior revisions of

the file. The tools take the revision of a file that fixes a vulnerability and then use

WoC’s blob to old blob (b2ob) and old blob to blob (ob2b) mappings recursively to

find older and newer revisions of the file. Alternatively, they can use WoC’s commit

to parent commit (c2pc) and commit to child commit (c2cc) to find older revisions

(up to the revision that introduced the vulnerability, if we know that) and newer

revisions. The older revisions are likely to contain the vulnerability, and the newer

revisions are likely to contain the fix. However, that is not guaranteed to be the case.

In extremely rare cases projects revert back to vulnerable code even after fixing it.

The tools allow manual inspection and modification of the lists of old and new blobs

to see if they are actually vulnerable and fixed respectively before moving on to the

next phase. This manual intervention solves the problem, but to scale the solution

the tools will need to be enhanced.

If a developer copies a file and makes a small change before committing for the

first time, the tools will not find the match. Adding a new copyright notice, making

formatting changes to match a style guide, or changing the CR/LF format at the end

of lines are examples of inconsequential changes that would affect the ability to find

a match. It will only find the match if the initial commit is identical to the copied

file or a previous revision of the copied file. The tools can be enhanced to catch these

and other modifications, and it is the subject of future work.
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Chapter 5

Conclusion

5.1 Discussion

Our research is motivated by the orphan security vulnerabilities and license violations

caused by code reuse in open source software. Recent high profile data breaches

underscore the seriousness of software security. Our primary goal is to better

understand these issues and how they may be mitigated. In this work, we explore

the scope of the problem on a small sample of vulnerabilities and the willingness of

project maintainers to fix issues.

The vast quantity of open source projects distributed over different hosting

platforms complicates our task. By exploiting the World of Code infrastructure,

we build tools that collect code reuse data with the coverage and scale that had

previously been impractical.

First, using VDiOS, we find a very large number of projects with orphan

vulnerabilities based on the four vulnerabilities in our case study. As hypothesized,

the probability of an orphan vulnerability is lower for more active projects. Also,

supporting Linus’s Law [19], the probability of an orphan vulnerability is lower

for projects with more developers. Orphan vulnerabilities appear to concentrate in

inactive or no longer maintained projects, but they are also present in very popular
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(over 10K stars) and very active projects as well. Orphan vulnerabilities, even if

they are in unmaintained or inactive projects, still pose risks. First, a developer

might copy code from such projects as, for example, they may have a unique feature

that fixed projects lack. Second, code from inactive projects may still be running in

existing systems, for example in embedded devices. We, in fact, found a case where

someone asked a question about a project that appeared to be inactive, indicating

that they were using it. By looking both at relatively old orphan vulnerabilities and

very new orphan vulnerabilities, we observe relatively fewer old orphan vulnerabilities,

suggesting that often orphan vulnerabilities are eventually fixed or removed. The time

to fix appears to be substantial, providing opportunity for the orphan vulnerability

to propagate further. Even very well-known and very old vulnerabilities still persist

in the orphan form.

Our attempts to gauge willingness of the project maintainers to fix orphan

vulnerabilities yielded mixed results, with only a small fraction applying the patch.

Our case study suggests that orphan vulnerabilities are widespread, they take a

very long time to be fixed, or they persist. They exist not only in forks or abandoned

projects but also in highly active and popular projects as well. Even once an orphan

vulnerability is identified and the fix provided to a maintainer, only a small fraction

act upon the suggested fix. We conclude that orphan vulnerabilities pose an ongoing

problem that needs to be addressed not just by identifying and providing fixes to the

projects, but also by providing screening tools to projects reusing source code and by

educating the open source development community.

We found that orphan vulnerabilities are widespread in open source software.

Out of the 3,615 vulnerable files in our CVEfixes dataset, 3,014 (83.3%) were copied,

resulting in more than three million orphan vulnerabilities. The orphan vulnerabilities

came from 800 (71.8%) of the projects in the CVEfixes dataset and were distributed

across 719,131 projects found in the World of Code. The majority of the original

vulnerable files (59.3%) and their copies (63.7%) are written in the C programming

language, which predates the use of package managers.
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While most projects containing orphan vulnerabilities displayed low levels of

commit activity and had small numbers of contributors, we examined a subset of

2021 projects that had at least 100 GitHub stars. These active projects had an

average of over six years of activity. While the number of copied vulnerable files was

about 50% higher in active projects than the entire dataset, active projects were much

more likely (11.6% compared to 1.7%) to have published a security policy.

We found that only 100,889 (1.3%) out of over three million orphan vulnerabilities

were fixed by replacing the file’s contents with the fixed version of the file from the

CVE fixes database. Another 68,760 (2.3%) copied files had their contents modified,

but we do not know if these modifications remediated the vulnerability or not. Fixed

vulnerabilities were only found in 26,801 (3.7%) of the more than seven hundred

thousand projects that contained orphan vulnerabilities.

We found that larger, more active, and longer-lived projects are more likely to

fix copied vulnerabilities, but even for the largest projects, the large majority of

vulnerabilities are not remediated. When dividing projects by primary programming

language, we found that 90% of vulnerabilities are not fixed for most languages.

However, projects using a few languages, like Rust, Go, and SQL fixed more than

10% of their orphan vulnerabilities.

Orphan vulnerabilities that were fixed required an average of 459 days to be

remediated. However, 15% of projects fixed orphan vulnerabilities in less than one

day, indicating constant watching of security updates or automated update tools.

Orphan vulnerabilities survived a long time even in active projects, where half of

orphan vulnerabilities required more than three years to remediate.

For all popular projects with orphan vulnerabilities we searched for repositories

that contained a SECURITY.md file. For each of these repositories, we checked if

the copied vulnerable file was still present in the repository and if the repository

corresponded to an actual project (not a collection of samples or a collection of

vulnerabilities). We contacted the e-mail address listed in the SECURITY.md file to

disclose the vulnerability. We received responses from two-thirds of the projects
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with promises to either look into the potential security issue or to update the

vulnerable file. One month after the disclosure, half of the projects with disclosed

orphan vulnerabilities had fixed the vulnerabilities by either upgrading the library

dependency or by removing the vulnerable file.

The case where files from a package manager are copied into and committed to

the project’s repository posed a dilemma for our research. On one hand, we are

specifically looking for files that are copied from one repository and committed into

another, and not cases where files are included via a package manager. This suggests

that we should exclude these files. On the other hand, those files might have been

copied from another repository that used a package manager. And since they are

committed, they may be copied into other projects. Since we are studying copy-

based code reuse, any file committed into a public repository is of interest. In either

case, the vulnerable files are committed to a publicly available repository, thus able

to be copied. Since our motivation is to mitigate vulnerabilities caused by copy-based

code reuse, we chose to include these files. Section 4.2.1 addresses the prevalence of

package manager files that are committed to repositories. In order for the analysis

to be done without the package manager files, we filtered the output to remove the

files that were originally added through package managers, and we make that filtered

output available with the other data and source code from this research so that others

can redo our analysis with the subset that does not include these files.

For developers, we recommend identifying and documenting copied code, so that it

can be updated when vulnerabilities are reported. We also recommend using package

managers instead of copying source code directly, so that vulnerabilities are easier to

find with existing tools. Software security teams need to be aware that most software

supply chain tools do not detect orphan vulnerabilities and that orphan vulnerabilities

are common in C/C++ code. New tools that can identify orphan vulnerabilities are

needed.

Additionally, our findings highlight the need for better tools to detect copied

vulnerabilities. Current tools work well with package managers, but do not adequately

91



detect all copy-based reuse induced vulnerabilities. Tool builders have an opportunity

to develop tools for orphan vulnerabilities that are similar to tools for other types

of copied vulnerabilities. Better tools could improve the accuracy of copied code

detection, be easily integrated into developer’s workflows, track code provenance at

the scale of all open source code, work with any programming language, and integrate

with vulnerability databases. Our VCAnalyzer tool provides foundational work in

that area, but it is only a beginning.

Researchers also need to be aware of the limitations of software supply chain tools

and the high prevalence of orphan vulnerabilities. Studies are needed to advance our

understanding of the risks associated with copy-based code reuse and identify best

practices for minimizing these risks. Researchers can also help identify and analyze

the specific types of vulnerabilities that are most commonly introduced through copy-

based code reuse, as well as the factors that contribute to the prevalence of this

practice.

The ability to easily copy code among open source projects makes it difficult to

comply with the need to determine the provenance of code essential for cybersecurity

and for complying with the licensing terms. Such provenance encompasses the exact

origin of each component and its license and various qualities of the component, such

as absence of vulnerabilities and high likelihood of future maintenance. With the aim

to address these challenges, we created an approach supported by a tool prototype,

UVHistory, that links each piece of source code to all projects where it resides and,

also, to its version histories in all these projects. This combined version history

of a file from all open source projects we refer to as universal version history. We

exemplify UVHistory via scenarios illustrating how it can help developers identify

bugs and vulnerabilities and verify that license terms are not violated. Specifically,

using UVHistory, developers can find the origin of a file including the open source

repository where it originated, follow the evolution of the file over time and across

different repositories, identify which authors have worked on a file, and read all the

log messages for any modifications to that file in any repository. We also evaluate
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UVHistory in two contexts: to identify license non-compliance and to find instances

of unfixed vulnerabilities. We find that in active and popular projects both problems

are common, and anyone can easily identify them using our approach.

Both open source and commercial tools fail to find many security vulnerabilities

and license violations because they fail to trace the history of a file as it is copied and

modified over time. We show that finding the universal version history of a file can

help find issues that these tools miss.

5.2 Future Work

5.2.1 Improvements to detection methods

We would like to improve our file-level duplication detection while still maintaining

the large-scale efficient method provided by World of Code. Minor modifications

made to a copied file before it is committed for the first time causes the file not

to match the original file. Removing comments and white space or using ctags and

then storing the resulting hash in World of Code would allow those copied files with

inconsequential changes to be discovered.

Moving beyond just file-level duplication detection, the tools could be expanded to

also look for duplicated code fragments. Finding the origin of code fragments would

also be useful in addressing the challenges discussed in this paper. The current tool,

in order to scale to near the entirety of open source software, uses hash matching.

While we cannot escape hash matching to work at this scale, it would be possible to

match on multiple hashes: from the original content (as described), from the tokenized

content, from content with removed comments, from computed ASTs, vulnerability

fixing diffs, etc. Matching the sets of tokens or ASTs would yield many false positives,

but more precise similarity measures can be employed for the matched sets since

the number of comparisons would be tiny compared to the entire collection of open

source software. Similarly, locality-sensitive hashing (LSH) that maps similar content
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to the same bucket (unlike traditional hash) could be employed. Additions to the

underlying World of Code infrastructure would be required to support these kinds of

enhancements.

Additionally, we could learn techniques from research in signature analysis,

speech recognition, pattern analysis, and image recognition, which typically involves

specialized algorithms, machine learning, and data analysis techniques.

5.2.2 Additional studies

In order to better understand why code is copied without maintaining links to the

code origin, we would like to conduct more broad studies including surveys and/or

interviews with project maintainers.

In this study, we came across a couple of interesting questions that we think would

be worth studying. The jpeg compressor issue was fixed and CVE entry created in a

well-funded Android project. The fix was not quickly put into the less-funded jpeg-

compressor project. Is there a difference in the number of vulnerabilities in better-

funded projects vs less-funded projects? Also, the projects with commercial licenses

were being used in open source projects. What is the prevalence of commercially

licensed code being copied into open source projects?

5.2.3 VDiOS

In future work, we would like to make improvements to VDiOS that increase its

precision, provide more useful reporting, and conduct more broad studies of orphan

vulnerabilities and other orphan flaws to better understand why and under what

circumstances the fixes are more likely to be (or not to be) applied.

We believe that improvements can be made in the algorithm used for identifying

the vulnerable and not vulnerable blobs. There is probably no perfect method without

manual inspection, but improvements are possible.
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VDiOS checks to see if a project contains a known vulnerable file, but it has no

way to know if the project uses the code in a vulnerable way. In other words, we

know the project contains a vulnerable file, but that does not prove that the project

is in fact vulnerable. It would be valuable, though time-consuming, to determine if

the project is in fact vulnerable.

If we do not know when a vulnerability was introduced, VDiOS looks at a

vulnerable revision of a file and then looks at all prior revisions since the prior revisions

are likely to also contain the vulnerability. It would be valuable to know when the

vulnerability was introduced so that we can look at all the revisions between when the

vulnerability was introduced and when it was fixed. A tool like SZZ Unleashed [56]

might be helpful in this area.

VDiOS could easily be expanded for other purposes. In addition to checking for

security vulnerabilities, VDiOS could also be used to look for cases where one project

has added enhancements that may be useful to other projects. VDiOS could also be

enhanced to search for cases where code is reused but the license requirements are

not propagated or have changed, which could help developers ensure that they follow

the license terms correctly.

The primary focus of VDiOS is to collect the relevant information. The user

interface is very rudimentary. In a future version, we would like to provide a better

user interface.

5.2.4 UVHistory

The UVHistory tool presented here, as described earlier, is a prototype. Based on

the success of our tests, we would like to further develop the tool into a production

quality open source project. We would like to make improvements that increase its

capabilities and provide more useful reporting. In this section, we describe some of

the valuable improvements that could benefit the UVHistory tool.
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In order to find the file history across the very large collection of open source

software, performance is critical. World of Code provides the efficient search methods

required for searching such a large collection. The focus of the initial work was to

get the content correct. Performance issues were secondary. A future version would

benefit from performance enhancements.

The current tool has a basic command line interface for running the tool. The

output is produced in a simple HTML format for viewing in a browser. The primary

focus of UVHistory is to collect the relevant information. The user interface is very

rudimentary. In a future version, we would like to add an easy-to-use graphical user

interface with a more readable output display.

This file history can be rather long and convoluted in some cases. In these cases,

it is hard to see the complete path of the file history. A useful addition in a GUI

version of the tool would be to display the history as a directed acyclic graph (DAG)

across repositories in a manner similar to how a Git tool might display the Git history

as a graphical representation of the Git DAG.

5.2.5 Artificial Intelligence

While we looked at the prevalence and risks associated with code reuse in open source

software, it is evident that the landscape of software development is continually

evolving, with emerging trends in AI and machine learning playing a pivotal role.

The growing use of AI-generated code, driven by technologies such as large language

models, opens opportunities to investigate the security vulnerabilities and licensing

issues within this automatically generated code. We looked at the case where orphan

vulnerabilities were included in the BigCode∗ open source large language model.

Future research can look into the identification and assessment of vulnerabilities and

compliance challenges unique to AI-generated code.

∗www.bigcode-project.org
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5.3 Conclusion

Code reuse through code duplication (white-box reuse) is a common practice in

software development. While it has benefits, such as faster development time, lower

cost, and improved quality, it also has inherent risks as the reused code may contain

security vulnerabilities, license violations, or other problems. In some cases, those

issues may be orphan (known and fixed in other repositories).

In this paper, we first described a case study with four different cases that show

the extent of security vulnerabilities in open source software caused by code reuse.

We also presented a tool, VDiOS, to find file-level code reuse in any language across

the entirety of open source software by leveraging the World of Code infrastructure.

Using VDiOS, we found very extensive white-box reuse of vulnerable code with a

large number of projects that do not appear to fix the upstream vulnerability. These

are cases where reused code contains known vulnerabilities or other bugs that persist

in open source projects even though they have been fixed in other projects.

We next described a large scale empirical study of orphan vulnerabilities, which are

vulnerabilities directly copied into open source repositories. We investigated the scale

of the problem, along with characteristics of vulnerable projects and fixed projects.

We developed a tool to find copied files and their project’s characteristics across the

expansive software collection in World of Code and created a dataset of vulnerable

copied files and their fixes.

Finally, we articulated the concept of universal version history and argued for its

usefulness in the context of the entirety of open source software. We introduced a

prototype tool, UVHistory, that leverages the World of Code infrastructure to collect

information about the source code and other artifacts to help better understand

and manage widespread copying of source code. We demonstrated the value of the

universal version history concept by finding evidence of negative effects of reuse,

including reuse of outdated code that contains known vulnerabilities or other bugs, is

missing useful features, or has different license restrictions. Our UVHistory tool helps
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automate the production of the universal version history of source code by tracing

code among repositories and enables finding the origins and version history for any

source code file. We have shown the potential of our approach by demonstrating a

solution in two different contexts which have practical relevance: license compliance

and security vulnerabilities.

Overall, we may conclude that extensive code copying in OSS results in an

extensive spread of vulnerable code that may take years to fix and that affects not

only inactive, but also highly active and popular projects. We also found that many of

the projects may not be willing to patch the vulnerabilities even after being provided

a fix.

We found that 83.4% of the 3,615 vulnerabilities in our CVEfixes dataset were

copied into more than three million files found in over seven hundred thousand open

source projects in the World of Code. The majority (63.7%) of vulnerable copied files

were C source or header files. We discovered that orphan vulnerabilities are rarely

fixed. Only 100,889 (1.3%) of the three million vulnerable copied files were ever

replaced with the fixed version of those files. Fixed vulnerabilities were only found in

26,801 (3.7%) of projects that contained orphan vulnerabilities. While large, active

projects were more likely to remediate some vulnerabilities, the large majority of

vulnerabilities were not remediated in such projects.

These findings suggest that addressing unfixed vulnerabilities in OSS requires at

least three types of support. On one hand, if a patch is provided, some of the projects

are willing to apply it. On the other hand, for projects that do not fix vulnerable code,

we need to provide information to potential users of the code that their application

still contains unfixed vulnerability. Finally, developers who are contemplating reusing

the code in a project that contains unfixed vulnerabilities need to be informed about

the risks and provided with suggestions on how to patch or with patches fixing the

existing vulnerabilities.

In this comprehensive research endeavor, we investigated security vulnerabilities

and license violations stemming from copy-based code reuse in open source software.
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This work underscores the pervasive issue of orphan vulnerabilities, which are

vulnerabilities persisting in copied code even after being fixed in their original

projects. This work also considers license violations stemming from copy-based code

reuse. We show how finding the universal version history of a file across open source

repositories can help mitigate these issues. The findings emphasize the critical need

for better tools, developer awareness, and practices to mitigate these risks in the open

source community, ultimately contributing to the enhancement of software supply

chain security, code quality, and license adherence.
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