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MSR is a branch of history/archeology

“. . . my history will . . . be judged
useful . . . as an aid to the
interpretation of the future, which in
the course of human things must
resemble if it does not reflect it.”
Thucydides



MSR is workflow

I A typical MSR workflow[8]:
I Identify relevant sample
I Collect historic data
I Fit/use a model to interpret (or shape) the future

I Aims of this talk
I Highly simplified history of MSR
I Potential lessons to interpret/shape future MSR



How MSR differs from traditional
empirical approaches?

I General scientific workflow
I measure inputs prospectively
I model/predict outputs

I MSR
I measure inputs from pre-existing data
I model/predict outputs



Determinants of scientific productivity?

I What slows you down?



Determinants of scientific productivity?

I What slows you down?

I Answer: Measurement



Determinants of scientific productivity

I Reduction of measurement effort

I Improved measurement accuracy

I Increased ability to measure, i.e, measure new
phenomena

I Will grow population of scientists (MSRers)



Decreasing measurement costs

I Science: interviews, observations, manually
records
I Tiny scale
I Extremely disruptive and costly
I But, measures exactly what is desired

I AI: large-curated community datasets in certain
domains

I MSR: operational data in VCS/ITS/Mailing
lists
I Free to use
I Massive scale (in OSS)
I But, highly problematic accuracy



Lesson 1

a) Look for domains with free-to-use, abundant data
b) Use, help curate, and construct community
datasets



Increasing accuracy

I Create a custom measurement instrument
I Expensive for human behavior data: self reports,

interviews, surveys

I Operational data techniques ([5])
I Recovering context (e.g., [6])
I Correcting data errors (e.g., [9])
I Adjusting interpretation based on missing data

(e.g., [3, 1])



Lesson 2

I Increase accuracy via operational data
techniques to
I Contextualize (auto-label)
I Correct
I Understand why data is missing

I “Data programming”[7]
I Use heuristics+domain knowledge to label

pragmatically, i.e.,
I has(comment,”bug”) → type = fix

I Use modeling to correct labels



Ability to measure

I Input(Program code)
I McCabe, Halstead, goto
I OO complexity/smells

I Input (VCS changes, ITS issues)
I Developers, e.g., productivity
I Code and process quality and lead time
I Code, process, expertise, identity embeddings



Lesson 3?

I What are the new enablers?



Historic modes of software production

I Direct hardware: wires/assembly language

I Programming languages, tools, styles

I Development process/coordination in large
industry projects

I Massive collaboration, code copy/reuse,
interdependencies, knowledge transfer
I 60M contributors (43M aliased)
I 173M projects (107M deforked)
I 22 percent copied (to 14 projects on average)
I Largest communities

I Collaboration: 6M projects+contributors (75M
cliques)



Lesson 3

I Investigate new modes of production
I Input: software supply chains
I Output: risk, sustainability

I Use effective representations (embeddings) for
the nodes, links, and the network itself

I Exploit existing infrastructure



SSC of the 1st kind

I Technical dependencies among projects with
change effort as product flow

I Primary risks: unknown vulnerabilities,
breaking changes, lack of maintenance, lack of
popularity

Examples of SSC of the first kind
I Python: import re

I Java: import java.util.Collection;

I JavaScript: package.json



SSC of the 2nd kind

I Copying of the source code from project to
project as product
flow

I Primary risks: license compliance, unfixed
vulnerabilities/bugs, missing updated
functionality

Examples of SSC of the second kind
I Implementation of a complex algorithm

I Useful template

I Build configuration



SSC of the 3rd kind

I Knowledge (product) flow through code
changes as developers learn from and impart
their knowledge to the source code

I Primary risks: developers may leave, companies
may discontinue support

Examples of SSC of the third kind
I Developers gaining skills with

tools/packages/practices

I Developers spreading practices, e.g., testing
frameworks



SSCs Measurement: Key Needs

I Completeness: the entirety of OSS

I Autocuration: address data quality at scale

I Cross-referencing: to make analysis run in
minutes not months



Ready-to-use infrastructure

I World of Code Infrastructure[4, 2]:
I Complete, Current, Curated, Cross-referenced
I “Research Ready” for Supply Chain Research
I How to use: github.com/woc-hack/tutorial,

worldofcode.org
I This Oct, hybrid hackathon to try out



Lesson 4

I Big data slows you (and computer down)

I Use stratified sampling
I Focus not just on projects, but also

I Authors
I APIs
I Source code

I Reconstruct past states of the world



Summary (lesson 5)

I To increase productivity
I Expand measurement scope to new modes of

production (SSC)
I Keep effort low by

I Using existing or standard datasets
I Stratified sampling from complete collections

I Increase accuracy via operational data
”programming”
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Abstract

The desire to better understand software development lead to numerous attempts to
quantify it. Easy-to-measure artifacts, such as source code, could provide only the
most basic understanding of the entire development process and the attempts to
directly measure quality and effort were cost-prohibitive, error-prone, and rarely shared
with researchers or made public. The rise of open source not only provided a reliable
software infrastructure but also the rich data source for the software engineering
community to finally measure aspects of software development never seen before.
Over time and with increased use of open source software, actual developers
increasingly need to deal not just with their own project but with projects upstream,
downstream, or sideways in the huge open source software supply chain. Measures
derived from the entire software supply chain are now likely to bring about the next
software engineering revolution.
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