
Refactoring for Changeability: A way to go? 
 
 

Birgit Geppert, Audris Mockus, and Frank Rößler 
Avaya Labs 

Software Technology Research 
{bgeppert, audris, roessler}@research.avayalabs.com 

 
 

Abstract 
Legacy systems are difficult and expensive to maintain 
due to size, complexity, and age of their code base. 
Business needs require continuously adding new 
features and maintaining older releases. This and the 
ever present worry about feature breakage are often the 
reason why the sweeping changes for reversing design 
degradation are considered too costly, risky and 
difficult to implement. We study a refactoring carried 
out on a part of a large legacy business communication 
product where protocol logic in the registration domain 
was restructured under ongoing development of a 
parallel branch of the legacy code.  We pose a number 
of hypotheses about the strategies and effects of the 
refactoring effort on aspects of changeability and 
measure the outcomes. The results of this case study 
show a significant decrease in customer reported 
defects and in effort needed to make changes. 
 
1. Introduction 
 
Legacy systems are difficult and expensive to maintain 
due to size, complexity, and age of their code base. The 
original creators sometimes leave the organization, 
leaving the knowledge gap and the legacy of a hard to 
understand code base. Improving such code base, 
thus, poses enormous challenges. Complicating things, 
new features are being added, which requires 
supporting the old and new code over long periods of 
time. As a consequence, making the necessary 
sweeping changes is often considered too risky and 
difficult to implement. 

In an effort to overcome the reluctance of 
restructuring complex legacy code, we have 
demonstrated a restructuring approach on the 
registration software of a large legacy business 
communication product. The restructured code is now 
available to customers. Registration implements a 

standard-based communication protocol with several 
proprietary extensions. We have applied the SELEX 
architectural pattern (Section 2.3) for defining the target 
design and software refactoring [4] as an approach for 
migrating the original code towards the new design. In 
order to avoid disruption of ongoing development, we 
performed the refactoring on a parallel branch of the 
code base and synchronized the two branches later on. 

The business purpose of this refactoring effort was 
to improve intelligibility, changeability, and quality of 
the code, but without imposing a significant 
performance penalty and without breaking or changing 
existing functionality. In [7], we reported on our 
measurement results at a stage where the refactored 
code had just entered system testing, i.e., before alpha 
and beta testing and system deployment. We found 
that an expected performance degradation did not 
occur. On the contrary, we measured a performance 
improvement of around 10%, which was achieved 
simply as a byproduct of the structural changes and 
not by an intentional optimization effort. Furthermore, 
our unit testing results strongly suggested that 
software refactoring indeed enabled us to migrate the 
code with little risk of feature breakage. Nevertheless, 
those findings did not yet include results from system 
verification and potential problems from the field, 
because they were not available at the time. Also, 
concerning changeability, we could only report on our 
experiences with those changes submitted in parallel to 
our refactoring project. Now, one year later with the 
product being sold to customers, we are in a better 
position for a more thorough analysis. 

To systematically study the impact of our 
refactoring on changeability of the code, we need to 
pose a number of hypotheses and quantify our 
findings. For that we analyze change data that was 
collected since the system was deployed (available to 
customers since mid 2004).  



The remainder of the paper is organized as follows. 
We start from describing the project context in Section 
2, including the background of the product, the nature 
of the refactored domain, a brief introduction to our re-
engineering approach, and a discussion of our 
hypotheses. We follow with quantitative methodology 
in Section 3 and present the results in Section 4. Finally, 
we discuss validation in Section 5 and conclusion in 
Section 6. 
 
2. Project Context 
 
2.1 Product 

We examine the call processing software installed on 
many Avaya telephony systems. This software system 
is an established product and embodies several 
decades of knowledge and experience in the telephony 
field. In a recent release, the software contains 
approximately seven million lines of code mostly in C 
and C++. The software development organization 
deploys major releases on a fixed schedule, with 
subsequent dot releases that bundle patches and 
refinements to the system. 

Multiple releases are in the field and are used by 
tens of thousands of customers, many of whose 
businesses depend on the high availability of the 
product. This makes the software exceedingly difficult 
to enhance while maintaining the smooth operation of 
the hardware/software combinations deployed. 

 
2.2 Registration Domain 

The refactored target domain implements the protocol 
logic for registering certain types of IP phones and 
backup IP telephony servers. The subsystem consists 
of a standard-based communication protocol with 
numerous proprietary extensions. It has around 30 
KLOC not including code generated from ASN.1 
specifications and a 3rd party protocol stack for lower-
level packet transmission functionality. 

The registration code has been developed in C++ 
over the past 5 years with contributions from around 40 
different developers. During that time the code had 
undergone numerous enhancements, and many more 
enhancements are expected. With each enhancement 
we take a chance of design degradation, a common and 
well-known problem in software engineering. 

The original design of the target subsystem had four 
separate modules dealing with following concerns:  

• packet transmission,  
• error-control, 
• message en/decoding, and 

• message processing. 

Message processing was further structured 
according to the different messages that are sent over 
the net and following concerns have been separated 
out in different member functions: 

• dispatch incoming messages, 
• extract parameters of an incoming message and 

trigger message processing, 
• process an incoming message, 
• trigger necessary steps for sending an outgoing 

message, 
• trigger underlying protocol state machine, 

populate message structure, and trigger 
encoding. 

It should be obvious that the original design 
encapsulated different steps in processing of an 
incoming message. While being a common approach to 
software design, “steps in processing” did not 
adequately support desirable quality attributes such as 
changeability and intelligibility. The goal of the 
refactoring effort was to set the focus more on these 
attributes. 
 

 
 

Figure 1: Registration Protocol : 
Excerpt from original design 



2.3 Re-Engineering Approach 
 
SELEX Architecture Pattern 

Communication protocols often have highly optimized 
designs, and therefore tend to be tightly coupled, 
difficult to change and hard to understand. For 
instance, the registration protocol encompasses many 
protocol operations such as detecting network address 
translation (NATDiscovery), authenticating IP phones 
(Authentication), binding an IP phone’s address to its 
extension (AssociateStation), and checking that a 
phone is correctly administered on the switch 
(AdminValidation). Protocol operations  are carried out 
while exchanging a minimum set of messages. The 
target subsystem communicates with other subsystems 
and with the endpoint that wants to register. Figure 1 
illustrates part of the message exchange among these 

components. Each of the messages carries information 
for several protocol operations, in particular, the four 
protocol operations mentioned above. For instance, an 
incoming GRQ message contains both, NATDiscovery 
and Authentication information. Figure 2 lists the 
mapping of protocol operations to messages. 

According to the original design (Section 2.2), each 
incoming message (GRQ, RRQ, and STIM_S) has one 
member function responsible for processing the 
message (Figure 1). Thus, we have an n:m mapping 
between protocol operations and member functions in 
the code. For instance, the Authentication functionality 
is scattered across the GRQ and RRQ member functions 
and the RRQ member function participates in both 
Authentication, AssociateStation, and 
AdminValidation. In order to modify, add, or delete a 
specific protocol operation we therefore need to 
analyze and change multiple member functions that deal 
with many unrelated concerns. This is a sign of poor 
information hiding [14]. We would rather like to 
encapsulate protocol operation-specific code in 
separate modules so that changes are confined to the 
corresponding modules only. This is the intent of the 
SELEX (SEquence & multipLEX) pattern, which 
provides a general way for modularizing complex 
communication protocols without imposing a 
significant performance penalty. 

In SELEX terminology, we call the encapsulation of a 
protocol operation a collaboration [5]. Note that a 
collaboration encapsulates the behavior of a protocol 
operation not only for one agent, but all agents 
involved in accomplishing that function. Figure 3 
illustrates the collaboration-based view for our example. 
We have three agents, namely the endpoint, the target 
subsystem, and another subsystem. The target 
subsystem together with the endpoint implements the 
NATDiscovery, Authentication, and AdminValidation 
collaborations. For AssociateStation the target 
subsystem also needs to collaborate with the other 
subsystem. Due to their distributed nature, 
collaborations consist of several roles which are played 
by the involved agents. For instance, NATDiscovery 
has two roles, one played by the target subsystem, the 
other one played by the endpoint. A collaboration 
includes a micro-protocol that defines the interactions 
among its roles. The micro-protocol defines how 
collaboration roles exchange micro-messages in order 
to accomplish their common task. Each collaboration 
role processes one or more such micro-messages. Thus, 
a collaboration role consists of a number of message 
handlers each responsible for processing one micro-
message. 

Collaborations are the architectural components in 
SELEX. There are also two compositional mechanisms 
for connecting collaborations. Composition has two 
aspects to it. First, collaborations do not execute in 
isolation. Their roles may depend on each other in the 
sense that one role provides data and conditions that 

GRQ GRJ GCF RRQ RRJ RCF STIM_G STIM_S
NATDiscovery X X X
Authentication X X X X X X
AssociateStation X X X X X
AdminValidation X X X  
 

Figure 2: Message Mapping  

 
Figure 3: Registration Protocol: 

Collaboration-based View 



other roles rely on. As a consequence, composition 
must enforce a certain execution order among message 
handlers, which is called protocol sequencing. Second, 
even though micro-protocols define their own message 
sequences, it is not always effective for the composite 
protocol to transmit these messages separately over the 
net. As a consequence, composition must be able to 
simultaneously execute various micro-protocols over 
the same message sequence, which is called protocol 
multiplexing. The elements that implement the 
compositional logic are called protocol demultiplexers.. 

The SELEX pattern structures a complex 
communication protocol into simpler micro-protocols. 
Looking at it from a different angle, micro-protocols are 
the building blocks from which more complex protocols 
can be composed. One advantage of the SELEX pattern 
is that compositional logic can be defined separately 
from the building blocks. In particular, this allows 
assembling a family of protocols from a collection of 
micro-protocols [6]. The family members vary in the 
micro-protocols selected and their specific composition. 
Thus, for a family of protocols  we also have a family of 
protocol demultiplexers encapsulating the 

compositional logic for single family members. 
For the registration domain we identified a pool of 

around 20 collaborations and used them for assembling 
a family of around 15 different registration protocols. 
Figure 4 compares part of the old design with the 
corresponding part of the new design. On the left hand 
side we have the original target subsystem with three 
large message handlers. In the old design the family 
members’ compositional logic was mixed with the logic 
for multiple protocol operations and also distributed 
over multiple large message handlers. On the right hand 
side we have the new SELEX design, which cleanly 
separates protocol operations and compositional logic. 
We have four different collaboration roles, one for each 
protocol operation, with altogether six small message 
handlers. The fact that we assemble not only one 
protocol but rather a family of around 15 protocols is 
illustrated by the set of protocol demultiplexers and 
classification functions for identifying the right 
protocol demultiplexer from an incoming message.  

The SELEX pattern allows designing, developing, 
and changing collaborations independently from each 
other. We can also reason separately about 

 
 

Figure 4: Registration Protocol: Old Design vs. New Design (Excerpts) 



collaborations, their composition, and eventually the 
entire protocol and protocol family. This supports an 
incremental development and testing of complex 
(families of) communication protocols. 

Software Refactoring 

We applied software refactoring for migrating the 
original registration code towards the new SELEX 
design. Software refactoring [4] is the process of 
improving the code structure of an existing software 
system without changing its external behavior. It is 
conducted in a sequence of simple, fail-safe code 
transformation steps (called refactorings). If strictly 
applied, software refactoring allows to clean up existing 
code and to turn bad code into well-designed code with 
only little risk of introducing bugs.  

There are many refactorings described in the 
literature. A common example is the JAVA refactoring 
“Extract Method” [4]. It explains how to pull a code 
fragment out of a larger method. The mechanics of a 
refactoring explain in all detail how to perform the 
refactoring. For instance, the mechanics of “Extract 
Method” start with: 

1. “Create a new method, and name it after the 
intention of the method.” 

2. “Copy the extracted code from the source method 
into the new target method.” 

3. “Scan the extracted code for references to any 
variables that are local in scope to the source 
method. These are local variables and parameters 
to the method.” 

In our refactoring project, we applied several non-
standard refactorings which are not published yet. For 
those cases, we needed to prove to ourselves that the 
code transformations are behavior-preserving. If we 
could not find a convincing argument, we did not 
perform a code transformation. 
 
2.4 Hypotheses 

To study the impact of our refactoring on changeability 
of the code, we pose a number of hypotheses about the 
effects and strategies of the refactoring effort and 
quantify our findings.  
 
H 1. The quality of the software in terms of customer 

reported defect rate is likely to improve because 
the software is more transparent to maintain and 
there are fewer issues remaining as refactoring is 
likely to discover existing latent issues. We 
consider the number of field problems found and 

the root cause of these problems to test this 
hypothesis. 

H 2. The refactoring reduces the effort required to make 
changes because the software is more transparent 
to maintain. We estimate change effort and we 
assess the amount of code that may need to be 
considered to make the change. 

H 3. The refactoring reduces the scope of changes 
within the refactored domain but does not change 
the scope of changes outside the domain. We 
consider number of files touched in a change, 
number of lines added, and number of lines in the 
files that are modified as various measures of 
scope.  

 
3. Methodology 

We mainly use measures and factors captured in two 
databases containing information captured during 
product development including change requests and 
code changes and a customer report database which we 
use to identify software changes done as a result of 
customer reported problems.  

 
3.1 The Software Change Process 

When a change to the software system is needed, a 
work item is created. Work items range in size from very 
large work items, such as releases, to very small 
changes, such as a single delta (modification) to a file. 
Figure 5 shows how a typical change management 
system works.  In the discussion below we use the 
word “change” to refer to changes at the granularity of 
an MR unless otherwise noted. 

The project we consider in this paper employs a 
version control system (VCS) which maintains versions 
of the source code and documentation, and a change 
request management system (CMS) system that keeps 
track of individual requests for changes, (known as 
modification requests, or MRs). Whereas a delta is 
intended to keep track of lines of code that are 
changed, an MR is intended to be a change made for a 
single purpose. Each MR may have many deltas 
associated with it. The project under consideration 
used the Sablime system for change tracking and an 
internally developed system for most of the version 
control. It is possible to trace all software modification 
to an MR. The modifications are typically made for one 
of the following reasons.  

 
1. Repairing previous changes that caused a 

failure during testing or in the field. 
2. Introducing new features to the existing system. 



3. Restructuring the code to make it easier to 
understand and maintain. (An activity more 
common in heavily modified code, such as in 
legacy systems.) 

 
MRs are assigned, among other things, the MR type, a 
priority, release, resolver, and resolution status, which 
allows us to track and monitor changes to the software. 
We used these systems to obtain the changes in 
response to failures detected after the software was 
deployed. We used change comment to identify a few 
administrative changes that were done to deploy a new 
lint-type software tool.  

We obtained a list of all changes related to 
registration domain over the last six major releases of 
software, the directories and files where registration 
related code was kept and identified a set of changes 
that were executed after the registration refactoring was 
complete. We also identified a subset of the files in the 
registration domain that were directly involved in 
refactoring. 

Finally, we have identified changes that were done 
to fix a problem raised by a customer and the release of 
software the customer was running at the time they 
encountered the problem. 

 
3.2 The Value of Analyzing Changes 

The analysis of software changes has a number of 
distinct benefits that may not be immediately obvious.  
 

• The data collection is nonintrusive, using only 
existing data and making analysis possible in 
commercial projects that are usually under intense 
schedule pressure and do not have time or 
resources to collect additional data.  

• Long history on past projects is available, enabling 
comparison to what happened in the past and 
customization and calibration of the methods to the 
existing environment. Nonetheless, one must be 
mindful of changes to the environment and 
application that make comparisons problematic.  

• The information is fine grained, at the MR/delta 
level. Such fine level data collection on a large 
scale would not be possible otherwise.  

• The information is complete, all parts of software, 
documentation, test cases that are under version 
control are recorded.  

• The way the version control system is used rarely 
changes, making data uniform over time.  

• Even small projects generate large volumes of 
changes making it possible to detect even small 
effects statistically.  

• The version control system is used as a standard 
part of the project, so the development project is 
unaffected by experimenter intrusion. 

 
We believe that MRs are a very rich source of 
information about software development and that their 
analysis can evoke rewarding insights. Unfortunately 
drawing conclusions about characteristics such as 
effort and quality is fraught with challenges. We 
describe some of these challenges in the following 
sections. Basic to all of them is that special care must 
always be taken to obtain information on how version 
control and change management are used in the project 
so as not to misinterpret the MR classifications or 
misunderstand the process used to create, make 
progress on, and record information about MRs. 
 
4. Changeability Results 

Changeability involves a variety of factors and we 
consider several that we thought were important in 
software business. We start by investigating defect 
rates, continue with analyzing impact on effort, and 
then look at more structural aspects related to the 
scope of changes. 
 
4.1 Defect Rate 
 
H 1. The quality of the software in terms of customer 

reported defect rate is likely to improve because 

 
 
Figure 5: Hierarchy of changes and associated 
data sources. Boxes with dashed lines define data 
sources (VCS and CMS), boxes with thick lines 
define changes, and boxes with thin lines define 
properties of changes. The arrows define an “is a 
part of” relationship among changes, e.g., each MR 
is a part of a feature. 

 



the software is more transparent to maintain and 
there are fewer issues remaining as refactoring is 
likely to discover existing latent issues. We 
consider the number of field problems found and 
the root cause of these problems to test this 
hypothesis.  

 
One of the main problems in legacy systems is “brittle” 
code, when any change is likely to generate faults. The 
reduction of fault-proneness is, therefore, directly 
related to changeability according to our interpretation. 

Previously it was shown ([8], [12]) that the customer 
reported defects are predicted by the number of 
previous changes, so the number of defects have to be 
normalized to gage differences in quality. We did this 
by computing defect rates.  

To make the comparison we obtained all changes 
related to registration domain over four releases prior to 
refactoring and compared them with changes for one 
release involving refactoring. We also obtained all 
changes done as a result of customer reported issues 
that were reported for the refactored release and four 
prior releases.  

We had to adjust for the fact that the refactored 
release had been deployed only seven months while 
the four prior releases had longer deployment intervals. 
The shorter interval leads to less exposure and fewer 
defects are discovered by customers, see, for example, 
[13]. We have estimated that at least half of all defects 
reported for a release are discovered within seven 
months of deployment. This ratio depends on several 
factors, including how fast the deployment proceeds 
(i.e., what fraction of customers install the release 
within first few months of deployment) and how rapidly 
the probabilities that a later customer finds a new defect 
and that an existing customer finds defect long after 
installation decline over time from release deployment 
and customer installation respectively.  It, therefore, is 
likely to be different in another product. 

 

 
We found that the relative and absolute numbers (see 
Table 1) of field problems went down after refactoring. 
After we reduce the number of pre-refactoring release 
field problems by 50 percent to adjust for the fact that 
they had more exposure (as described above), the 
comparison of defect rates using Fisher’s exact test, 
see, e.g., [1] for comparing proportions shows that the 
difference had p-value of .06 or we can reject the null 

hypothesis that post-refactoring defect rate is equal or 
higher than the rate for pre-refactoring releases with 90 
percent confidence level.  

Additionally, we inspected all alpha and beta 
problems and found that they related to issues in 
existing functionality and none caused by refactoring 
itself. Therefore, while refactoring discovered some 
complex issues, and, at this point, has not introduced 
new problems, it did not discover all the preexisting 
problems. 
 
4.2 Effort 
 
H 2. The refactoring reduces the effort required to make 

changes because the software is more transparent 
to maintain. We estimate change effort and we 
assess the amount of code that may need to be 
considered to make the change.  

 
As illustrated in Figure 4, code for individual protocol 
operations, protocol composition, and protocol 
classification is well separated after refactoring 
suggesting that it may be easier to comprehend. 

The effort is calculated as described in, for example, 
[2]. The unit (Person Month) of effort  is divided among 
changes done by a single developer during a unit of 
time (one month). Therefore, changes made during 
months when a developer makes many other changes 
are assigned less effort than changes during months 
when the developer makes fewer changes.  

We have compared effort between a sample of 
changes modifying files in the registration domain in 
the two post-refactoring releases with changes in a 
prior release. We have excluded three changes done to 
implement modification to avoid lint warnings because 
they do not pertain to our hypothesis.  

There were 151 changes for the two post-refactoring 
releases and 292 changes for the two prior releases. 
Because change effort is highly skewed, we calculated 
two-sample t-test on the logarithm of effort and also 
Wilcoxon rank sum test with continuity correction (see, 
e.g., [10]) on the untransformed effort. The average of 
the logarithm for pre-refactoring releases was -1.12 and 
for post-refactoring releases was -1.23 log(Person 
Months) with t-value of -1.6 and p-value of 0.06. 
Wilcoxon rank sum test had the same p-value of 0.06.  

Although it was shown that effort depends on the 
size of changes and on the productivity of developers 
[2], we did not have sufficient sample of changes to 
make such adjustments. 

The findings of increased quality and decreased 
effort lead to wider adoption of the approach. In 



particular, another, much larger area is currently 
undergoing refactoring and a training course for a large 
group of developers is prepared and delivered by one 
of the co-authors. 
 
4.3 Scope  
 
H 3. The refactoring reduces the scope of changes 

within the restructured domain.  
 

A number of change scope measures were introduced 
in [11]. There it was shown that the scope of changes in 
number of files, number of delta, and number of lines 
affected the probability that a change would contain a 
defect. Other work, e.g., [9], has shown that change 
scope in terms of number of files, number of delta, and 
number of lines affects the effort it takes to make a 
change. Finally, we were interested to investigate the 
effects of refactoring on such structural change 
properties.  

The number of files reflects the number of distinct 
entities a developer must modify to implement a 
change. The need to modify a large number of files 
usually indicates complex changes except for 
administrative changes where simple and often identical 
modifications are made in many files, for example, to 
address a new lint warning. We have excluded such 
administrative changes from our analysis.  

The number of delta. Previous work has found that 
the number of delta measures both the number of files 
and the number of lines and is a convenient single 
measure of change scope.  

The number of lines added or changed. The large 
modification may require more effort and may be more 
likely to introduce a defect.  

The number of lines in changed files. Making a 
modification requires developers to navigate to a 
particular location that needs a change. It is reasonable 
to assume that navigation in a very large file may 
present more difficulties to a programmer than 
navigation in a smaller file.  

We collected all changes modifying files in the 
registration domain and compared the attributes of 
changes made before and after the refactoring. We also 
consider two definitions of the domain, one that 
involves all files in the domain and another definition 
that involves only the files affected by refactoring. We 
have used the more inclusive domain for the effort and 
quality analyses.  

 Table 2 shows the comparison where averages and 
the significance of the difference based on a two 
sample Wilcoxon rank sum test are shown. 

We found that the number of files changed in a 
modification and the number of delta went up 
significantly after refactoring, if we consider entire 
registration domain. These measures have not changed 
significantly, if we consider only files related to 
refactoring.  

The number of lines added and the number of lines 
in the modified files went down significantly when 
considering only files related to refactoring. There is no 
significant difference if we include all files related to 
registration domain.  

One reason for the increase of the file and delta 
measures might be that post-refactoring releases 
contain a larger fraction of new feature changes than 
the earlier releases and new feature changes tend to be 
larger in scope than fixes. The fact that file and delta 
measures have not significantly changed, if we 
consider only files related to refactoring, seems 
intuitive. Even though functionality that used to be in a 

 



single file was distributed over considerably more new 
files (cf. Figure 4), this distribution actually achieved a 
cleaner separation of concerns (Section 2.3). Since the 
number of files per concern, however, has not increased 
a lot, the number of files touched should not change 
significantly, if a modification request covers a single 
concern only. 

An obvious reason why the number of lines in 
modified files that were touching refactored code went 
down, is the fact that the number of lines in all the 
refactored files did go down significantly as a result of 
refactoring (cf. Section 2.3). 

In summary, the trend in change scope depends on 
the particular operationalization of scope. It is also 
related to a more complicated question of when 
functionality should be kept in a single versus multiple 
files and the question of optimal file size.  
 
5. Validation 

We have processed the change data to exclude 
modifications like administrative changes that do not 
pertain to the concept of changeability.  

We used several operationalizations of the scope, 
quality, and domain to make sure that the results are 
invariant with respect to operationalization. In 
particular, we had two definitions of which files 
constitute the registration domain and used several 
definitions for the scope of changes.  

We have investigated distributions of the quantities 
used in statistical analysis to ensure that they are 
satisfied. The distribution of logarithm of effort and size 
measures did approximate normal distribution, however, 
we also present results for rank-based tests that do not 
require restrictive assumptions regarding underlying 
distributions.  

Because of relatively small samples we could not 
adjust for all the factors that may affect our modeled 
quantities of defect rate, effort, and scope.  

Obviously, possibilities to generalize from a case 
study are severely limited, however we found the 
results surprising and compelling enough to be worth 
publishing. Previous studies of the impact of 
technology application in legacy system context ([2][3]) 
in different projects arrived at similar results and we see 
this thereby supporting previous research indicating 
that new technology does not always fail when applied 
in a legacy context. 
 
6. Conclusion 

We investigate the impact of refactoring of a legacy 
product on changeability. We find a mixed picture when 

investigating change scope where the refactoring 
impact depends on how we define the domain and 
which measures we investigate. However, the customer 
reported defect rates and change effort decreased in the 
post-refactoring releases. In comparison to previous 
work that found four-times decrease in change effort [3] 
for a completely reengineered domain, and five percent 
decrease [2] when using a tool designed to make it 
easier to make changes to legacy code, in our case we 
observe an intermediate 11% decrease in change effort.  

Previous work investigating the impact of a tool 
designed to make it easier to make changes to legacy 
code on customer reported defects [2] found halving 
the probability of a customer reported failure. In our 
case we do not yet have enough data precisely to 
estimate the rate of customer reported defects after 
refactoring, however it is sufficient to determine that it 
is significantly lower.  

We hope that studies quantifying tool and 
technology impact will become more common in the 
future and will enable informed decision making by 
software project participants and provide scientific 
body of evidence on relationship between plethora of 
software technologies and even broader array of 
software products and projects. 

 
7. References 
 
[1] A. Agresti, Categorical data analysis, Wiley, New York, 

New York, 1990 
[2] D. Atkins, T. Ball, T. Graves, and A. Mockus, “Using 

version control data to evaluate the impact of software 
tools: A case study of the version editor”, IEEE 
Transactions on Software Engineering, 28(7):625-637, 
July 2002 

[3] D. Atkins, A. Mockus, and H. Siy, “Measuring 
technology effects on software change cost”, Bell Labs 
Technical Journal, 5(2):7-18, April-June 2000 

[4] Fowler, M., et al, Refactoring: Improving the Design of 
Existing Code, Addison-Wesley, 2000 

[5] Geppert, B., Roessler, F., “Collaboration-based Design 
– Exemplified by the Internet Session Initiation Protocol 
(SIP)”, Working IEEE/IFIP Conference on Software 
Architecture, The Netherlands, 2001 

[6] Geppert, B., Roessler, F, “A Complementary 
Modularization for Communication Protocols – Enabling 
Technology for IP Telephony Product Lines”, 
International Colloquium of the Sonderforschungsbereich 
501 on Software Reuse – Requirements, Technologies 
and Applications, Kaiserslautern, Germany, 2003 



[7] Geppert, B., Roessler, F., “Effects of Refactoring 
Legacy Protocol Implementations: A Case Study”, 
Metrics 2004, Chicago, USA, 2004 

[8] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, 
“Predicting fault incidence using software change 
history”, IEEE Transactions on Software Engineering, 
26(2), 2000 

[9] T. L. Graves and A. Mockus, “Inferring change effort 
from configuration management data”, Metrics 98: Fifth 
International Symposium on Software Metrics, pages 
267-273, Bethesda, Maryland, November 1998 

[10] M. Hollander and A. Wolfe, Douglas, Nonparametric 
statistical inference, John Wiley and Sons, New York, 
New York, 1973 

[11] A. Mockus and D. M. Weiss, “Predicting risk of 
software changes”, Bell Labs Technical Journal, 
5(2):169-180, April-June 2000 

[12] A. Mockus, D. M. Weiss, and P. Zhang, 
“Understanding and predicting effort in software 
projects”, In 2003 International Conference on Software 
Engineering, pages 274-284, Portland, Oregon, May 3-
10 2003. ACM Press 

[13] A. Mockus, P. Zhang, and P. Li, “Drivers for customer 
perceived software quality”, In ICSE 2005, St Louis, 
Missouri, May 2005. ACM Press 

[14] Parnas, D.; “On the Criteria to Be Used in Decomposing 
Systems into Modules”, in Software Fundamentals, D. 
Hoffman and D. Weiss, Eds.,  Addison Wesley, 2001 

 


